Розділ «Тема 7. МАКРОМОЛЕКУЛИ. БІЛКИ.»

Біологія


Білки, їх властивості, структура


Білки – це високомолекулярні біополімерні органічні сполуки, мономерами яких є амінокислоти. Білки були виділені в окремий клас біологічних молекул у XVIII ст. в результаті робіт французького хіміка А. де Фуркруа. Вперше описав білки і запропонував назву протеїни, що в сучасному розумінні означає білок, голандський хімік Є. Я. Берцеліус. Перше виділення білка (у вигляді клейковини) з пшеничного борошна було здійснено Я. Беккарі. Особливістю досліджень білків початку XXI ст. є одночасне отримання даних про білковий склад цілих клітин, тканин або організмів, чим займається окрема наука – протеоміка.

Молекулярна маса білків від 5 000 до 150 000 Да і більше.

Одним із найбільших одиничних білків є тітін (компонент саркомерів м'язів), що містить понад 29 тис. амінокислот і має молекулярну масу 3 000 000 Да. Але найбільші за масою білки (понад 40 000 000 Да) характерні для вірусів.

Хімічний склад. Складаються білки з С, Η, О, N; у деяких білках є S, частина білків утворює комплекси з іншими молекулами, які містять Р, Fe, Zn, Сu. Білки є біополімерами з 20 різних мономерів – природніх основних амінокислот. Білки можуть утворювати інтерполімерні комплекси з вуглеводами, ліпідами, нуклеїновими кислотами, фосфорною кислотою та ін.

Фізико-хімічні властивості. Завдяки наявності вільних аміногруп і карбоксильних груп білки характеризуються всіма властивостями кислот і основ (амфотерні властивості). Дисоціація аміно- і карбоксильних білкових груп обумовлює електрофоретичну рухливість білків. При низьких значеннях pH білкового розчину в ньому переважають позитивно заряджені аміногрупи, тому білки перебувають в катіонній формі. При високих значеннях pH переважають негативно заряджені СООН-групи і білки будуть перебувати в аніонній формі. При деякому проміжному значенні pH аміногрупи і карбоксильні групи можуть взаємодіяти між собою, тоді сума зарядів дорівнює нулю, і білки залишаються нерухомими в електричному полі (електричні властивості). Висока молекулярна маса надає білковим розчинам властивостей, характерних для колоїдних систем, а саме: здатність до утворення гелів, висока в'язкість, мала швидкість дифузії, високий ступінь набрякання, завдяки чому вони зв'язують близько 80-90% усієї води в організмі (колоїдні властивості). Розпад білків відбувається під дією кислот, лугів або специфічних ферментів-гідролаз, які розщеплюють їх до пептидів і амінокислот. Синтез здійснюється із амінокислот за матричним принципом за допомогою інформаційної РНК. Під впливом різних чиників білки можуть зсідатись і випадати в осад, втрачаючи природні властивості. Відсутність заряду і гідратної оболонки сприяє зближенню білкових молекул, їх злипанню і випаданню в осад. Це явище називається коагуляцією, вона може бути зворотною і незворотною. Незворотну коагуляцію можна розглядати як денатурацію білків. Денатурація – це процес порушення природної структури білків. При цьому зменшується розчинність білка, змінюються форма і розміри молекул тощо. Процес денатурації є оборотним, тобто повернення нормальних умов супроводжується віднов-

Стрічкова модель білка

Стрічкова модель білка

ленням природної структури білка. Такий процес називається ренатурацією. Звідси випливає, що особливості білка визначаються його первинною структурою. А ось процес руйнування первинної структури білків завжди необоротний, він називається деструкцією. Властивості білків залежать від структури, складу і послідовності розташування амінокислот.

Структура білків. Молекули білків є лінійними полімерами, що складаються з амінокислот. Крім послідовності амінокислот поліпептидного ланцюга (первинна структура), для функціонування білків украй важлива тривимірна структура (вторинна третинна і четвертинна), яка утримується в результаті взаємодії структур нижчий рівнів і формується в процесі згортання білків. Тривимірна структура білків за нормальних природних умов, при яких білки виконують свої біологічні функції, називається нашивним станом білка, а сама структура – нативною конформацією Виділяють чотири рівні структури білків.

Рівні організації білкових молекул

СтруктураХімічні зв'язки, які визначають існуванняХімічні зв'язки, які визначають існування
ПервиннаЛанцюгПептидні, дисульфідні
ВториннаСпіраль, складчастий листокПептидні, дисульфідні, водневі
ТретиннаГлобулаПептидні, дисульфідні, водневі, йонні, гідрофобні
ЧетвертиннаМультимерПептидні, дисульфідні, водневі, йонні, гідрофобні

Первинна структура кодується відповідним геном, є специфічною для кожного окремого білка і найбільшою мірою визначає властивості сформованого білка. Вторинна структура являє собою форму спіралі (α-структуру) або структуру складчастого листка (β-конформація) і є термодинамічно найстійкішим станом поліпептидного ланцюга та найпростішою структурою конформації біомолекул. Прикладом білків з вторинною стуктурою у вигляді спіралі є білки-кератини (утворюють волосся, нігті, пір'я тощо) і у вигляді складчастого листка – фіброїн (білок шовку). У вторинній структурі α-спіральні ділянки часто чергуються з лінійними. Третинна структура виникає автоматично в результаті взаємодії амінокислотних залишків з молекулами води. При цьому гідрофобні радикали "втягуються" всередину білкової молекули, а гідрофільні групи орієнтуються в бік розчинника. У такий спосіб формується компактна молекула білка, усередині якої практично відсутні молекули води. До білків з третинною структурою відносять міоглобін. Четвертинна структура виникає внаслідок поєднання кількох субодиниць (протомерів), що разом виконують спільну

функцію. Таке поєднання називається білковим комплексом (мультимером, або епімером). Типовими білками четвертинної структури є гемоглобін, ВТМ, деякі ферменти.

Кінцева структура буває дуже складною, а процес її прийняття новосинтезованим по лі пептид ним ланцюжком вимагає деякого часу. Процес прийняття білком структури називається згортанням, або фолдингом. Багато білків не здатні завершити згортання самостійно і досягти нативного стану, часто через взаємодію з іншими білками клітини. Такі білки вимагають зовнішньої допомоги від білків спеціального класу – молекулярних шаперонів. Більшість білків набуває правильної конформації лише у певних умовах середовища. При зміні цих умов білок денатурує, змінюючи свою конформацію. Чинниками, що спричиняють зміну конформації білків, є нагрівання, випромінювання, сильні кислоти, сильні основи, концентровані солі, важкі метали, органічні розчинники тощо.

Види хімічних зв'язків у білках. Амінокислоти здатні утворювати ряд хімічних зв'язків (пептидні, дисульфідні, водневі, йонні, гідрофобні) з різними функціональними групами, і ця їхня властивість є дуже важливою для структури та функцій білків.

Пептидний зв'язок – це ковалентний нітроген-карбоновий полярний зв'язок, який утворюється при взаємодії NH2 однієї амінокислоти з СООН іншої з виділенням води. Цей кислотоамідний зв'язок (–CO–NH–) є основним хімічним зв'язком білкових молекул і визначає їх первинну структуру та конформацію. Сполука, що утворюється в результаті конденсації двох амінокислот, є дипептидом. На одному кінці цієї молекули розташована аміногрупа, на іншому – вільна карбоксильна. Завдяки цьому дипептид може приєднувати до себе інші амінокислоти.

Дисульфідний зв'язок – це ковалентний полярний зв'язок, який утворюється при взаємодії сульфгідрильних груп (–SH) радикалів сірковмісної амінокислоти цистеїну. Цей зв'язок (–S–S–) може виникати як між різними ділянками одного поліпептидного ланцюга, так і між різними ланцюгами, визначаючи особливості білкових молекул. Стійкість багатьох білків значною мірою обумовлена кількістю саме цих зв'язків, які ніби "прошивають" молекули, надаючи їм міцності, нерозчинності (наприклад, у колагену шкіри, кератину волосся, шерсті).

Водневий зв'язок – це полярний зв'язок, який виникає при взаємодії електропозитивного Гідрогену з електронегативним Оксигеном у складі гідроксильної, карбоксильної та амінної груп різних амінокислот. Ці зв'язки (–О–Н–) набагато слабші, ніж пептидні, дисульфідні та йонні, але в силу своєї кількості (виникають між групами, яких найбільше в молекулах білків) вони набувають дуже великого значення в стабілізації структури білкових молекул.

Йонний зв'язок – це електростатичний полярний зв'язок, який виникає між іонізованою позитивно зарядженою аміногрупою одніє ї амінокислоти та іонізованою негативно зарядженою карбоксильною групою іншої амінокислоти. Цей сольовий зв'язок (-СОО-–HN3+-) може об'єднувати як витки одного і більше поліпептидних ланцюгів у білках третинної структури, так і витки різних ланцюгів у білках четвертинної структури. У водному середовищі йонні зв'язки значно слабкіші, ніж пептидні, і можуть розриватися при зміні pH.

Гідрофобні взаємодії – це неполярний зв'язок між радикалами амінокислот, які не несуть електричного заряду і не розчиняються у воді. Зближення цих радикалів обумовлено характером взаємодії гідрофобних груп (–СН3, –С2Н5 і т. д.) з водою. Ці зв'язки (–R–R–) ще слабкіші, ніж водневі, вони підтримують третинну і четвертинну структуру білків.

Сторінки


В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Біологія» автора Соболь В.І. на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „Тема 7. МАКРОМОЛЕКУЛИ. БІЛКИ.“ на сторінці 1. Приємного читання.

Зміст

  • ПЕРЕДМОВА

  • Розділ 1. ЗАГАЛЬНА ХАРАКТЕРИСТИКА ЖИВОЇ ПРИРОДИ

  • Тема 1. БІОЛОГІЯ – НАУКА ПРО ЖИТТЯ

  • Тема 2. СИСТЕМНА ОРГАНІЗАЦІЯ ЖИВОЇ ПРИРОДИ

  • Основні ознаки живої природи

  • Різноманітність живої природи

  • Розділ 2. МОЛЕКУЛЯРНИЙ РІВЕНЬ ОРГАНІЗАЦІЇ ЖИТТЯ

  • Тема 3. ЕЛЕМЕНТНИЙ СКЛАД ОРГАНІЗМІВ

  • Тема 4. НЕОРГАНІЧНІ СПОЛУКИ В ОРГАНІЗМАХ

  • Тема 5. ОРГАНІЧНІ РЕЧОВИНИ. МАЛІ ОРГАНІЧНІ МОЛЕКУЛИ

  • Тема 6. МАКРОМОЛЕКУЛИ. ЛІПІДИ. ВУГЛЕВОДИ. ПЕПТИДИ

  • Тема 7. МАКРОМОЛЕКУЛИ. БІЛКИ.
  • Тема 8. МАКРОМОЛЕКУЛИ. НУКЛЕЇНОВІ КИСЛОТИ

  • Тема 9. БІОЛОГІЧНО АКТИВНІ РЕЧОВИНИ

  • Розділ 3. КЛІТИННИЙ РІВЕНЬ ОРГАНІЗАЦІЇ ЖИТТЯ

  • Тема 10. ОРГАНІЗАЦІЯ КЛІТИН

  • Тема 11. ПОВЕРХНЕВИЙ АПАРАТ КЛІТИН

  • Тема 12. ЦИТОПЛАЗМА. ДВОМЕМБРАННІ ОРГАНЕЛИ

  • Тема 13. ОДНОМЕМБРАННІ ОРГАНЕЛИ

  • Тема 14. НЕМЕМБРАННІОРГАНЕЛИ. ОРГАНЕЛИ РУХУ. ЯДРО

  • Тема 15. КЛІТИННИЙ ЦИКЛ. ПОДІЛ КЛІТИН

  • Тема 16. ОБМІН РЕЧОВИН ТА ПЕРЕТВОРЕННЯ ЕНЕРГІЇ В КЛІТИНІ

  • Тема 17. ПЛАСТИЧНИЙ ОБМІН. БІОСИНТЕЗ БІЛКІВ

  • Реакції матричного синтезу

  • Тема 18. ПЛАСТИЧНИЙ ОБМІН. ФОТОСИНТЕЗ. ХЕМОСИНТЕЗ

  • Тема 19. НЕКЛІТИННІ ФОРМИ ЖИТТЯ

  • Розділ 4. ОРГАНІЗМЕНИЙ РІВЕНЬ ОРГАНІЗАЦІЇ ЖИТТЯ

  • Тема 20. ОРГАНІЗМ ЯК БІОЛОГІЧНА СИСТЕМА

  • Тема 21. ПРОКАРІОТИ

  • Тема 22. ЗАГАЛЬНА ХАРАКТЕРИСТИКА ЦАРСТВА РОСЛИНИ

  • Тема 23. ВЕГЕТАТИВНІ ОРГАНИ. КОРІНЬ

  • Тема 24. ВЕГЕТАТИВНІ ОРГАНИ. ПАГІН

  • Тема 25. ЛИСТОК ЯК СКЛАДОВА ЧАСТИНА ПАГОНА

  • Тема 26. ГЕНЕРАТИВНІ ОРГАНИ. КВІТКА

  • Тема 27. ГЕНЕРАТИВНІ ОРГАНИ. НАСІНИНА. ПЛІД

  • Тема 28. ОСНОВНІ ФУНКЦІЇ РОСЛИННОГО ОРГАНІЗМУ. ЖИВЛЕННЯ, ДИХАННЯ, ТРАНСПОРТУВАННЯ РЕЧОВИН, ВИДІЛЕННЯ

  • Тема 29. ОСНОВНІ ФУНКЦІЇ РОСЛИННОГО ОРГАНІЗМУ. РОЗМНОЖЕННЯ, РІСТ І РОЗВИТОК РОСЛИН

  • Тема 30. ОСНОВНІ ФУНКЦІЇ РОСЛИННОГО ОРГАНІЗМУ. ПОДРАЗЛИВІСТЬ ТА РЕГУЛЯЦІЯ ПРОЦЕСІВ ЖИТТЄДІЯЛЬНОСТІ

  • Тема 31. РІЗНОМАНІТНІСТЬ РОСЛИН. ВОДОРОСТІ

  • Тема 32. РІЗНОМАНІТНІСТЬ РОСЛИН. ВИЩІ СПОРОВІ РОСЛИНИ. МОХОПОДІБНІ

  • Тема 33. РІЗНОМАНІТНІСТЬ РОСЛИН. ПЛАВУНОПОДІБНІ. ХВОЩОПОДІБНІ. ПАПОРОТЕПОДІБНІ

  • Тема 34. РІЗНОМАНІТНІСТЬ РОСЛИН. ГОЛОНАСІННІ

  • Тема 35. РІЗНОМАНІТНІСТЬ РОСЛИН. ПОКРИТОНАСІННІ

  • НАДЦАРСТВО ЕУКАРІОТИ. ЦАРСТВО ГРИБИ

  • Тема 36. ГРИБИ. ЛИШАЙНИКИ

  • НАДЦАРСТВО ЕУКАРІОТИ. ЦАРСТВО ТВАРИНИ

  • Тема 37. ТВАРИНИ

  • Тема 38. ПІДЦАРСТВО ОДНОКЛІТИННІ

  • Роль одноклітинних тварин у природі та житті людини

  • Тема 39. ПІДЦАРСТВО БАГАТОКЛІТИННІ. ТИП ГУБКИ

  • Тема 40. ПІДЦАРСТВО БАГАТОКЛІТИННІ ТВАРИНИ. ТИП КИШКОВОПОРОЖНИННІ, АБО ЖАЛКІ

  • Тема 41. ТИП ПЛОСКІ ЧЕРВИ

  • Тема 42. ТИП ПЕРВИННОПОРОЖНИННІ, АБО КРУГЛІ ЧЕРВИ

  • Тема 43. ТИП КІЛЬЧАСТІ ЧЕРВИ, АБО КІЛЬЧАКИ

  • Тема 44. ТИП МОЛЮСКИ, АБО М'ЯКУНИ

  • Тема 45. ТИП ЧЛЕНИСТОНОГІ. РАКОПОДІБНІ

  • Тема 46. ТИП ЧЛЕНИСТОНОГІ. ПАВУКОПОДІБНІ

  • Тема 47. ТИП ЧЛЕНИСТОНОГІ. КОМАХИ

  • Значення комах у природі та житті людини

  • Тема 48. ТИП ГОЛКОШКІРІ

  • Тема 49. ТИП ХОРДОВІ

  • Тема 50. НАДКЛАС РИБИ

  • Тема 51. КЛАС ЗЕМНОВОДНІ, АБО АМФІБІЇ

  • Тема 52. КЛАС ПЛАЗУНИ, АБО РЕПТИЛІЇ

  • Тема 53. КЛАС ПТАХИ

  • Тема 54. КЛАС ССАВЦІ

  • ЛЮДИНА

  • Тема 55. БІОЛОГІЯ ЛЮДИНИ

  • Тема 56. ОРГАНІЗМ ЛЮДИНИ ЯК ЦІЛІСНА БІОЛОГІЧНА СИСТЕМА

  • Принципи регуляції цілісності організму людини

  • Тема 57. ОПОРА І РУХ

  • Тема 58. КРОВ І ЛІМФА

  • Тема 59. КРОВООБІГ І ЛІМФООБІГ

  • Будова та функції кровоносних судин

  • Рух крові судинами

  • Лімфообіг та його значення

  • Перша допомога при кровотечах

  • Серцево-судинні захворювання та їх профілактика

  • Тема 60. ДИХАННЯ

  • Нервова і гуморальна регуляція дихання

  • Хвороби дихальної системи та їх профілактика

  • Перша допомога при зупинці дихання

  • Вплив паління на організм людини

  • Тема 61. ЖИВЛЕННЯ

  • Недостатнє і надмірне харчування

  • Нервово-гуморальна регуляція діяльності травної системи

  • Хвороби шлунково-кишкового тракту та заходи запобігання їм

  • Тема 63. ШКІРА

  • Роль шкіри в теплорегуляції організму людини

  • Тема 64. ВИДІЛЕННЯ

  • Тема 65. ГУМОРАЛЬНА РЕГУЛЯЦІЯ

  • Тема 66. НЕРВОВА РЕГУЛЯЦІЯ

  • Тема 67. СПРИЙНЯТТЯ ІНФОРМАЦІЇ. СЕНСОРНІ СИСТЕМИ

  • Тема 68. ФОРМУВАННЯ ПОВЕДІНКИ І ПСИХІКИ ЛЮДИНИ

  • Сприйняття інформації мозком

  • Пам'ять, її структура, механізми, види та розвиток

  • Біоритми – фізіологічна основа чергування сну та активності

  • Тема 69. МИСЛЕННЯ І СВІДОМІСТЬ

  • Перша і друга сигнальні системи

  • Фізіологічні основи мови

  • Функціональна спеціалізація кори півкуль великого мозку

  • Здібності людини. Обдарованість

  • Індивідуальні особливості поведінки людини

  • Особистість та її формування: виховання і самовиховання

  • Порушення ВНД та їх вплив на організм людини

  • Тема 70. ПОХОДЖЕННЯ ЛЮДИНИ

  • Основні етапи Історичного розвитку виду Людина розумна

  • Людські раси, їх походження

  • ОСНОВНІ ВЛАСТИВОСТІ ОРГАНІЗМІВ

  • Тема 71. РОЗМНОЖЕННЯ ОРГАНІЗМІВ

  • Тема 72. ІНДИВІДУАЛЬНИЙ РОЗВИТОК ОРГАНІЗМІВ

  • Тема 73. ЗАКОНОМІРНОСТІ СПАДКОВОСТІ

  • Тема 74. ЗЧЕПЛЕНЕ УСПАДКУВАННЯ. ГЕНОТИП ЯК ЦІЛІСНА СИСТЕМА

  • Тема 75. ЗАКОНОМІРНОСТІ МІНЛИВОСТІ

  • Закон гомологічних рядів спадкової мінливості організмів

  • Генетика популяцій

  • Тема 76. СЕЛЕКЦІЯ

  • Центри походження та різноманітності культурних рослин

  • Особливості селекції рослин, тварин і мікроорганізмів

  • Розділ 5. НАДОРГАНІЗМОВІ РІВНІ ЖИТТЯ

  • Тема 77. ЕКОЛОГІЯ

  • Поняття про середовище існування

  • Тема 78. ПОПУЛЯЦІЙНО-ВИДОВИЙ ТА ЕКОСИСТЕМНИЙ РІВНІ ОРГАНІЗАЦІЇ ЖИТТЯ

  • Правило екологічної піраміди

  • Тема 79. БІОСФЕРНИЙ РІВЕНЬ ОРГАНІЗАЦІЇ ЖИТТЯ

  • Жива речовина біосфери, її властивості та функції

  • Колообіг речовин у біосфері як необхідна умова YY існування

  • Сучасні екологічні проблеми

  • Вчення В. І, Вернадського про біосферу та ноосферу, його значення для уникнення глобальної екологічної кризи

  • Червона та Зелена книга

  • Природоохоронні території

  • Природоохоронне законодавство України

  • Тема 80. ОСНОВИ ЕВОЛЮЦІЙНОГО ВЧЕННЯ

  • Сучасні погляди на еволюцію органічного світу

  • Тема 81. ІСТОРИЧНИЙ РОЗВИТОК І РІЗНОМАНІТНІСТЬ ОРГАНІЧНОГО СВІТУ

  • Проблема виникнення життя на Землі

  • Поділ геологічної історії Землі на ери та періоди

  • Запит на курсову/дипломну

    Шукаєте де можна замовити написання дипломної/курсової роботи? Зробіть запит та ми оцінимо вартість і строки виконання роботи.

    Введіть ваш номер телефону для зв'язку, в форматі 0505554433
    Введіть тут тему своєї роботи