120
і(х > 120) = 1 - і(х < 120) = 1 - | /(х)ох = 1 - 0,909 ~ 0,091.
-ос
Ймовірність Р(А) події А складається з суми ймовірностей Р(АА і Р(А2) подій А1 і А2, тобто Р(А) = Р(А1) + Р(А2) = 0,091 + 0,091 ~ 0,182 = 18,2%.
2-й варіант. Подію ^4{80>І< >120} можна звести і розглядати як доповнення до протилежної події А, яку позначимо _8{80 <І(2 < 120} (див. незафарбовану площу рис. 3.17). Тоді Р(А) = 1- Р(В).
Подія _8{80< ¡2 <120} відповідає попередній ситуації (див. вище п. "в"), коли з події В1 {¡2 < 120} треба вилучати елементи події В2{2< 80}. Ймовірність Р(В) події В є різниця ймовірностей Р(В{) і Р(В2)
Р(В) = Р(12 < 120) - Р(12 < 80). Ймовірність Р(А) бажаної події А дорівнюватиме
Р(А) = 1- Р(В) = 1 - [Р(Щ < 120) - Р(12 < 80)]. Визначення ймовірності за допомогою функцій розподілу матиме вигляд:
120 Г120 80 ~|
1 - | Л(х)Сх = 1 - | Л(х)Сх - | Л(х)Сх = 1 - [Р(120) - Р(80)], або 1- [Р(120) - Р(80)] = 1 - [0,909 - 0,091] = 1- 0,818 = 0,182 = 18,2%.
Отже, ймовірність того, що ¡2 не прийматиме значення в діапазоні від 80 до 120, тобто Р(80 > ¡2>120), складає 18,2%.
Зауваження: якщо графік розподілу симетричний і зафарбовані площі однакові за розміром, ймовірність Р(А) розраховується як подвоєна площа однієї з частин, наприклад, Р(А) = 2-Д80 < ¡2) = 2-0,091 ~ 0,182 = 18,2%.
Розподіли дають можливість рішення і зворотної задачі: знаходження значень змінної x, ймовірність якої задано.
Так, за даними прикладу 3.12 можна стверджувати, що на рівні ймовірності 0,05 (5%) коефіцієнт інтелекту ¡2 не перевищуватиме значення 75,3. З графіка функції розподілу Р(2) рис. 3.18 видно, що ймовірності 0,05 відповідає зафарбована площа, яка обмежена графіком щільностіЛ(Ш) і ординатою ¡2 = 75,3. Інакше кажучи, Р(!2) = ^(¡2 < 75,3) = 0,05.
Аналогічно можна отримати значення змінної ¡2, ймовірність якої складає 20% або 0,20. З рис. 3.19 видно, що ймовірності 0,20 відповідає зафарбована площа, яка обмежена графіком щільностіЛ(Ш) і ординатою ¡2 = 87,4.
Інакше кажучи, Р(!2) = ^(¡2 < 87,4) = 0,20.
На даному етапі вивчення властивостей розподілів доречно згадати поняття "процентиль" і надати йому додаткового змістовного сенсу. Як визначалося вище, процентилі ділять обсяг упорядкованої сукупності на сто частин, тобто відокремлюють від сукупності по 0,01 частки (по 1%). Pj - це z'-й процентиль - межа, нижче за яку лежать /' відсотків значень. Наприклад, якщо п'ятий процентиль дорівнює 30 (записують Р5 = 30), це значить, що 5% всіх значеньx не перевищують 30.
Значення функції розподілу F(X), які знаходяться у межах від 0 для F(-") до 1 для F(+co), також зручно поділити на сто частин і представляти функцію розподілу у вигляді процентилів. Якщо ціна шкали функції розподілу F(x) становить 0,01 (1%), отримані вище результати можна прокоментувати у такій спосіб:
o для F(IQ) = P(IQ<75,3) = 0,05 = 5% можна записати Р5 = 75,3 - п'ятому процентилю відповідає коефіцієнт інтелекту, який не перевищує значення у 75,3;
o для F(IQ) = P(IQ <87,4) = 0,20 = 20% можна записати Р20 = 87,4 - двадцятому процентилю відповідає коефіцієнт інтелекту, який не перевищує 87,4.
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Математична статистика» автора Руденко В.М. на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „3.2. ВИПАДКОВІ ВЕЛИЧИНИ“ на сторінці 6. Приємного читання.