і=1
Для неперервної змінної можна записати такі співвідношення:
- щільність розподілу Дх) = Р '(х). Це значить, що щільність Дх) є першою похідною від функції розподілу Р(х);
- щільність розподілу для будь-якої випадкової величини невід'ємна, тобто Лх) > 0, і має таку властивість:
складатиме р4 р'. = 0,00 + 0,05 + 0,10 + 0,20 = 0,35 (див. комірку Е6 рис. 3.6).
¡=1
Ймовірність отримання у випробуванні будь-якого значення з повної системи випадкових значень (фактично, це є ймовірність достовірної події) дорівнює
п
одиниці. І дійсно, для і = п ймовірність рп = ^ р] = 1(див. комірку Е9 рис. 3.6
і=1
або останнє значення ймовірності розподілу на графіку рис. 3.7).
Законом розподілу випадкової величини є співвідношення, що встановлює зв'язок між можливими значеннями випадкової величини і відповідними до них ймовірностями. Закон розподілу може бути задано функціями:
o функцією розподілу Р(х)
Р(х) = Р(Х < х); (3.15)
o функцією щільності розподілуДх)
Дх) = Р(Х = х). (3.16)
Для дискретної змінної функція розподілу Р(х) може бути представлена в аналітичній формі. Так, заданими рис. 3.8 функція Р(х) матиме вигляд:
Математичний аналіз надає геометричну інтерпретацію визначеному інтегралові (3.18) як площі (див. зафарбовану площу на рис. 3.10), яка зверху обмежена графіком функції /(х), а знизу - віссю абсцис у межах -ю < х < +со. Розмір площі за інтегралом (3.18) дорівнює одиниці.
Значення функції розподілу ¥(х) для певного значення х (наприклад, х = а) визначається через щільність розподілу /(х) за формулою:
Інтеграл (3.19) і функція ¥(а) розподілу також мають сенс площі (див. зафарбовану площу на рис. 3.11), яка обмежена з трьох боків: зверху - графіком функції Дх), знизу - віссю абсцис у межах -" < х < а, з правого боку -ординатою, яка проходить через точку х = а.
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Математична статистика» автора Руденко В.М. на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „3.2. ВИПАДКОВІ ВЕЛИЧИНИ“ на сторінці 3. Приємного читання.