Статистичні зв'язки між змінними досліджуються не лише методами кореляційного, а й регресійного аналізу, які доповнюють один одного. Основне завдання кореляційного аналізу - визначення зв'язку між випадковими змінними і оцінювання його інтенсивності та напряму. Основне завдання регресійного аналізу є встановлення форми і вивчення залежності змінних.
Регресія дозволяє за величиною однієї ознаки (змінна x) знаходити середні (очікувані) значення іншої ознаки (змінна У), зв'язаної з x кореляційно. Оскільки в дослідженнях конкретний вид взаємозв'язків невідомий, одне з головних завдань регресійного аналізу полягає у доборі відповідного виразу У = / (X), графік якого проходить через емпіричні точки (або досить близько до них) і таким чином зв'язує змінні x і У.
Вираз У = / (X) має назву рівняння регресії, функція/ (X) - функція регресії, а їхні графіки - лінії регресії. Регресійний аналіз виявляє кількісну залежність ознаки-фактора (залежної змінної) від одного або декількох ознак-факторів (незалежної змінної). Ця залежність може бути одномірною чи ба-гатомірною (множинною), як лінійною, так і нелінійною.
Одномірна лінійна регресія
Множинна регресія
3. ОСНОВИ ТЕОРІЇ ЙМОВІРНОСТЕЙ
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Математична статистика» автора Руденко В.М. на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „2.4. РЕГРЕСІЯ“ на сторінці 1. Приємного читання.