дисперсійному комплексі обчислюють у такому порядку : у& =1=1; ув = ів-1 = 1; ус = іс-1 = 1; уав=ул-ув = 1; vAC =vAovc = 1;увс = vвovc = 1;
^двс = УЛ ■Ув-Ус = 1; V, = Уа+^+^с +^ав +^ас +^вс +^авс = 7.
Сума часткових ступенів вільності повинна давати їх число для загальної
дисперсії у ' 1
Девіати, розраховані за даними нашого прикладу, наведені у таблиці 53 по рядку 5.
Вірогідність дії факторів і їх сполучень визначаємо, як і раніше відношенням факторних девіат і їх сполучень до залишкової девіати. Для нашого прикладу наведені по рядку 5 таблиці величини девіат ділимо на залишкову дисперсію 51,77. Обчислені значення коефіцієнтів Р записуємо по рядку 6.
Зіставляючи обчисленні та табличні значення Р критеріїв бачимо, що
загальнофакторна дисперсія * і дисперсії, викликані кожним з досліджуваних факторів, достовірні при всіх порогах імовірності (Р=0,95 ; Р=0,99 ; Р=0,999),
оскільки р > ґт. Дисперсії, зумовлені сполученнями (при всіх можливих варіантах) факторів, виявились невірогідними.
Таблиця 53
Зведена інформація результатів лічильної обробки трифакторного дисперсійного комплексу
Статистичні характеристики | Умовні позначення | А | В | С | АВ | АС | ВС | АВС | X | г | У |
Дисперсія | |||||||||||
невиправлена | С | 2805,66 | 3595,02 | 6586,80 | 107,58 | 64,02 | 36,96 | 16,90 | 13212,54 | ||
виправлена | С = С'-К | 2109,29 | 2702,74 | 4951,96 | 80,88 | 48,13 | 27,79 | 12,40 | 9933,32 | 3002,88 | 12936,20 |
Коефіцієнт співвідношення | 0,163 | 0,209 | 0,383 | 0,006 | 0,004 | 0,002 | 0,001 | 0,768 | 0,232 | 1,000 | |
Число ступенів вільності | V | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 58 | 65 |
Девіата | а1 | 2109,29 | 2702,74 | 4951,69 | 80,88 | 48,13 | 27,79 | 12,40 | 1419,04 | 51,77 | - |
Критерій Фішера | 40,74 | 52,21 | 95,65 | 1,56 | 0,93 | 0,54 | 0,24 | 27,41 | - | - | |
розрахунковий | 0,999 | 12,1 | 12,1 | 12,1 | 12,1 | 12,1 | 12,1 | 12,1 | 4,3 | - | - |
табличний | рт 0,99 0,95 | 7,1 4,0 | 7,1 4,0 | 7,1 4,0 | 7,1 4,0 | 7,1 4,0 | 7,1 4,0 | 7,1 4,0 | 3,0 2,2 | - | - |
7.1.3. Аналіз абсолютних змін досліджуваної ознаки
З аналітичної точки зору являє певний інтерес зіставлення груп у дисперсійному комплексі при вивченні впливу на результативну ознаку факторних ознак у різному їх сполученні (поєднанні). У трифакторному комплексі мають місце подвійні та потрійні взаємодії факторів. Наприклад, для розглядуваного прикладу розрахунку трифакторного комплексу середній рівень собівартості виробництва 1ц яловичини, сформованого під впливом факторів А і В при їх
рівнях А1 і в1 становитиме Мав = 88,04 грн. ( 278,00 + 866,53) : (9 + 4).
Аналогічно обчислюють названу результативну ознаку для всіх можливих сполучень вивчаючих факторних ознак. Нижче наведені середні рівні залежної змінної, одержані під впливом незалежних змінних у різних варіантах їх сполучень. Тобто маємо середній рівень собівартості одиниці продукції, зумовлений впливом різних варіантів взаємодії факторів продуктивності праці, рівня затрат та їх вартості.
маа=88,04; Ма1=2 =99,29; Мд2=1=98,39; ^ =109,78; Мда =84,25; Мд1с2=101,57; Мас=96,22; ^=113,59; Мда=84,33; мвд=101,84; мв2с1=97,41; мв2с2=Ц5,67; Ма.вд=69,50; Ма*с2 =96,28; ^4=91,63; маас2 =109,51; Ма2ва=90,29; Ма2вл=107,40; ^4=101,61; ма2в2с2 =119,78.
При аналізі загальної дії досліджуваних факторів спочатку вивчають вплив на результативну ознаку кожного фактора окремо, а потім їх сполучення. Судячи по даних розглядуваного прикладу,
виявився досить сильний вплив фактора с^с=38,3%). Як виразився вплив цього фактора, показує основний ряд часткових середніх м*, показаний графічно на рисунку 19. Із графіка і числового ряду добре видно, що фактор С при всіх градаціях факторів А і В діяв однаково : при С1 до 14 грн. рівень собівартості приросту був порівняно низький, при С2- понад 14 грн. він підвищився. Найнижчий (69,50 грн.) рівень собівартості виробництва яловичини проявляється в групі А^а, оскільки сполучення факторів зумовлюючих такий рівень, містить найкращі показники продуктивності праці, витрат і вартості кормів у досліджуваній сукупності. Зіставлення груп А1ва і лВ2С2 показує різницю середніх рівнів собівартості в підприємствах з однаково високою продуктивністю праці, низькою собівартістю витрачених кормів, але з різним рівнем їх витрат на виробництво 1ц яловичини.
Ця різниця в розглядуваному прикладі становить Млас2 ~м^а =109,51 - 96,28 = 13,23 грн.Зміна в абсолютних рівнях результативної ознаки, викликана підвищенням продуктивності праці (А) і зниженням вартості кормів (С) при однаково низькому рівні їх затрат (В1),
показує різницю _м"а= 101,40 - 69,50 = 31,90 грн.
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Статистика» автора Опря А.Т. на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „ТЕМА 7. СТАТИСТИЧНІ МЕТОДИ ВИМІРЮВАННЯ ВЗАЄМОЗВ'ЯЗКІВ“ на сторінці 11. Приємного читання.