Основними властивостями статистичних оцінок є спроможність, незмі-щенність, ефективність:
o Спроможність. Статистична оцінка ®n спроможна тоді, коли при постійному збільшенні обсягу вибірки (n -"со) вона наближається до значення параметра ©, який оцінює. Статистика ©" є спроможною оцінкою параметpa 0 , коли для будь-якого додатного числа є є справедливим співвідношення
limP{©n -0>є = 0. (4.2)
Наприклад, вибіркове середнє X є спроможною оцінкою генерального середнього fi, оскільки при збільшені числа випробувань X наближається до свого математичного сподівання (див. вираз (3.45)). Спроможною оцінкою вважається і вибіркова дисперсія.
Вимога спроможності означає, що оцінка має нести практичний сенс, наближати нас до істини і не бути абсурдною. З другого боку, у більшості ситуацій можна запропонувати декілька спроможних оцінок для одного й того ж самого параметра. Отже, властивість спроможності необхідна, але недостатня вимога. її необхідно доповнити іншими вимогами.
o Незміщенність. Статистика вважається незміщеною, якщо її математичне сподівання дорівнює параметру, що оцінюється. Вибіркове середнє X є незміщеною оцінкою генерального середнього fi, оскільки м[ X ] =ц, чого не можна сказати, наприклад, про вибіркові показники дисперсії. Для математичного сподівання можна записати
1 Г 2 1 2 (л 1 1 2 2
- пег - п- =<7 11--1 =-сг = ег--.
п п п) п п
Отже, математичне сподівання вибіркової дисперсії дорівнює
,^г2п п -1 22а2
Щз ] =-о =о--. (4.4)
пп
Як видно, оцінка з2 параметру а2 є зміщеною. Від'ємне зміщення дорівнює а2/п, залежить від обсягу вибірки п і в ситуації спроможності досягає нуля, якщо п-> є". Вимога незміщенності особливо чутлива для малої кількості спостережень. Ця вада оцінки з2 усувається переходом до незміщенної оцінки
*2 =-- 32. (4.5)
п -1
o Ефективність. Точкова оцінка називається ефективною, якщо вона має найменшу міру дисперсії вибіркового розподілу у порівнянні з аналогічними оцінками, тобто виявляє найменшу випадкову варіативність. Наприклад, серед трьох показників положення центру нормального розподілу (середнього Х, медіани ма і моди Мо) найбільш ефективною оцінкою вважається Х і найменш ефективною - Мо, оскільки для їхніх дисперсій характер-
2 2 2
ним є співвідношення 3х < 3ма < $мо [43, С. 100].
Для статистичного оцінювання параметрів генеральної сукупності бажано використовувати оцінки, які задовольняють одночасно вимоги спроможності, незміщенності й ефективності. Крім того, важливо знати, за якими методами відбувається вибір і побудова тієї чи іншої моделі статистичного оцінювання.
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Математична статистика» автора Руденко В.М. на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „4. СТАТИСТИЧНЕ ОЦІНЮВАННЯ“ на сторінці 2. Приємного читання.