- інтерпретація статистичних висновків щодо реальної ситуації й ухвалення відповідного рішення.
Статистичні методи обробки й інтерпретації даних спираються на теорію ймовірностей. Теорія ймовірностей є основою методів математичної статистики. Без використання фундаментальних понять і законів теорії ймовірностей неможливе узагальнення висновків математичної статистики, а значить і обгрунтованого їх використання для наукових і практичних цілей.
Так, завданням описової статистики є перетворення сукупності вибіркових даних на систему показників - статистик - розподілів частот, мір центральної тенденції і мінливості, коефіцієнтів зв'язку тощо. Проте, статистики є характеристиками, по суті, конкретної вибірки. Звичайно, можна розраховувати вибіркові розподіли, вибіркові середні, дисперсії і т. ін., але подібний "аналіз даних" має обмежену науково-пізнавальну цінність. "Механічне" перенесення будь-яких висновків, зроблених на основі таких показників, на інші сукупності не є коректним.
Для того, щоб мати можливість перенесення вибіркових показників або на інші, або на більш поширені сукупності, необхідно мати математично обгрунтовані положення щодо відповідності і спроможності вибіркових характеристик характеристиками цих поширених так званих генеральних сукупностей. Такі положення базуються на теоретичних підходах і схемах, пов'язаних з імовірнісними моделях реальності, наприклад, на аксіоматичному підході, на законі великих чисел і т.д. Тільки з їхньою допомогою можна переносити властивості, які встановлено за результатами аналізу обмеженої емпіричної інформації, або на інші, або на поширені сукупності. Отже, побудова, закони функціонування, використання імовірнісних моделей, що є предметом математичної галузі під назвою "теорія ймовірностей", стає суттю статистичних методів.
Таким чином, в математичній статистиці використовуються два паралельних рядка показників: перший рядок, що має відношення до практики (це вибіркові показники) і другий, що базується на теорії (це показники імовірнісної моделі). Наприклад, емпіричним частотам, що визначені на вибірці, відповідають поняття теоретичної ймовірності; вибірковому середньому (практика) відповідає математичне очікування (теорія) і т.д. Причому, в дослідженнях вибіркові характеристики, як правило, є первинними. Вони розраховуються на основі спостережень, вимірювань, дослідів, після чого проходять статистичне оцінювання спроможності та ефективності, перевірку статистичних гіпотез згідно з метою досліджень і врешті приймаються з певною ймовірністю як показники властивостей досліджуваних сукупностей.
Запитання. Завдання.
1. Охарактеризуйте основні розділи математичної статистики.
2. В чому полягає основна ідея математичної статистики?
3. Охарактеризуйте співвідношення генеральної і вибіркової сукупностей.
4. Поясніть схему застосування методів математичної статистики.
5. Укажіть перелік основних завдань математичної статистики.
6. З яких основних блоків складається застосування статистичних методів? Охарактеризуйте їх.
7. Розкрийте зв'язок математичної статистики з теорією ймовірностей.
2. СТАТИСТИЧНІ ПОКАЗНИКИ ВИБІРКИ
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Математична статистика» автора Руденко В.М. на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „1. ПРЕДМЕТ МАТЕМАТИЧНОЇ СТАТИСТИКИ“ на сторінці 3. Приємного читання.