o у комірці Б20 отримати відношення п2ухс (внести вираз =1-018/019);
o у комірці Б21 розрахувати коефіцієнт кореляції Пірсона для всього масиву за допомогою функції MS Excel =ПИРСОН(В3:В17;С3:С17). Коефіцієнт кореляції дорівнюватиме приблизно нулю (rxy ~ -0,04), що свідчить про (нібито) відсутність будь-якого зв'язку між змінними;
o розрахувати коефіцієнти кореляції окремо для частин масиву: у комірці D22 для віку від 10 до 22, у комірці D23 для віку від 26 до 38 .
Отже, для віку від 10 до 22 років коефіцієнт кореляції має високе додатне значення (rxy=+0,83), що підтверджує прямий зв'язок, який можна спостерігати на діаграмі. Для віку від 26 до 38 років коефіцієнт кореляції має від'ємне значення (^=-0,69), що інтерпретується як зворотний зв'язок. Значення кореляційного відношення " 0,67 підтверджує високій рівень не лінійності зв'язку змінних X Y.
Слід звернути увагу на те, що для коефіцієнта rfyxc спочатку вказують індекс у, а потім - х, який є мірою прогнозування Y по X. Важливо зазначити, що для лінійного кореляційного зв'язку виконується співвідношення rxy = ryx, проте rfyxc і rfxyy матимуть різні значення. Якщо звернутися до діаграми розсіяння (рис. 2.57), то можна відзначити той факт, що для особи, наприклад, віком 10 років (Х=10), можна прогнозувати середню оцінку тесту у 8 балів (Y=(7+9)/2=8), у той час як для оцінки тесту, наприклад, у 8 балів вік особи може бути як близько 10, так і близько 38 років.
Розрахунки важливих для психолого-педагогічних досліджень коефіцієнтів кореляції приведено разом з оцінкою їхньої вірогідності у розділі 5.6.
Коефіцієнти взаємної зв'язаності
2.4. РЕГРЕСІЯ
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Математична статистика» автора Руденко В.М. на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „2.3. КОРЕЛЯЦІЙНИЙ АНАЛІЗ“ на сторінці 2. Приємного читання.