Короткий зміст розділу
До дедуктивних умовиводів належить простий категоричний силогізм (від грецького - міркувати, робити висновок). Це найбільш розповсюджений вид опосередкованих умовиводів. Його називають простим, бо він має два засновки. Силогізм, який складається з більше, ніж двох засновків називається складним. Оскільки засновками і висновком його є категоричні судження, то Його називають категоричним.
1. Поняття простого категоричного силогізму та його структура
2. Правила термінів силогізму
З істинних засновків не завжди можна отримати істинні висновки. Для його істинності необхідно ще дотримання загальних правил категоричного силогізму. Існують сім загальних правил силогізму: три З них відносяться до термінів і чотири - до засновків. Розглянемо правила термінів силогізму:
1) У даному силогізмі повинно бути тільки три терміни. Вивід в силогізмі грунтується на відношенні двох крайніх термінів, тому він повинен мати тільки три терміни. Порушення цього правила пов'язане з явищем багатозначності слів, коли середній термін в одному засновку має одне значення, а в іншому - інше значення. Така помилка є порушенням вимог закону тотожності і називається подвоєнням терміна.
Наприклад:
Штамп (М) є технологічна оснастка (Р). Це судження (Б) є штампом (М).
Це судження (8) є технологічною оснасткою (Р)?!
У другому засновку під словом "штамп" розуміють вираз, який перетворився на загальне, позбавлене смислу твердження. У результаті порушення зв'язку між крайніми термінами виникає позбавлений змісту висновок.
2) Середній термін повинен бути розподіленим принаймні в одному із засновків. Якщо середній термін (М) не розподілений у жодному із засновків, то зв'язок між крайніми термінами буде невизначеним. Наприклад:
Деякі студенти (М) - відмінники (Р). Усі мої друзі (5) - студенти (М). 777
1-ший засновок:
М-нерозподілений у жодному із засновків. 2-гий засновок:
Висновок може бути:
a) Усі мої друзі - відмінники.
b) Деякі з моїх друзів - відмінники.
c) Жоден з моїх друзів не є відмінником.
3) Якщо крайній термін (8, Р) не розподілений у засновку, то він не повинен бути розподілений і в висновку (і навпаки). Наприклад: Усі мої друзі (М) - студенти (Р). Симоненко (Бї не є моїм другом (МУ Симоненко (8) не є студентом (Р)?! 1 - ший засновок
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Логіка» автора Н.Г.Мозгова на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „Розділ 8. Простий категоричний силогізм“ на сторінці 1. Приємного читання.