Розділ VIII. Поняття

Ви є тут

Логіка

Для того щоб встановити належність певного предмету до об'єму поняття, слід простежити, чи є він носієм всіх ознак, що складають зміст поняття без жодного виключення.

Ця обставина має важливе значення в слідчій практиці при встановленні юридичної оцінки різноманітних правових явищ, особливо при кваліфікації злочинів. Наприклад, якщо конкретне протиправне діяння не має хоча б однієї ознаки, що входить до складу такого злочину, як "шахрайство", то воно не може бути кваліфіковане як шахрайство і, таким чином, включеним в об'єм цього поняття.

Як ви звернули увагу, у самому визначенні обсягу поняття фігурує термін "множина". Справа у тому, що обсягом будь-якого поняття є деяка множина, а тому це дає можливість вивчити природу обсягу поняття, змоделювати його структурні, функціональні особливості на такому об'єкті як множина. Тобто, надалі для нас обсягом поняття буде множина і ми будемо з нею поводитися як обсягом конкретних понять. Така точка зору зумовлює необхідність визначити такий об'єкт як множина і охарактеризувати основні її ознаки.

М н о ж и н о ю називається будь-яка сукупність визначених і розрізнюваних між собою об'єктів мислимих як єдине ціле. Множина - це абстракція, в якій кожний предмет, що входить до неї розглядається лише з точки зору тієї ознаки, яка дозволила включити його до свого складу. Тому предмети, що складають множину не розрізнювані між собою (їм приписуються одні й ті самі ознаки).

Наприклад, множина книг, множина держав, множина рослин тощо. Для кожного із предметів, що входять у перераховані множини характерним є те, що для них усіх притаманні ознаки на основі яких утворені ці множини: "бути книгою", "бути державою", "бути рослиною".

Можна сказати, що предмети, які входять до множини розрізняються між собою. Але це розрізнення один від одного відбувається не за властивостями і відношеннями, а за їх іменами. Так у множині держав кожний із предметів як носій ознаки "бути державою" не відрізняється від іншого, але відрізняється як індивідуальність, як носій власного імені ("Україна", "Франція", "Аргентина" тощо).

Предмети, що належать до певної множини називаються елементами. Позначають їх малими буквами латинського алфавіту -

Множина, яка містить кінцеве число елементів називається скінченною (наприклад, множина планет Сонячної системи; множина формально-логічних законів тощо). А множина, яка має нескінченне число елементів називається нескінченою (наприклад, множина чисел, множина зірок, тощо).

Оскільки множини можуть складатися з об'єктів різноманітної природи це визначає їх універсальний характер і, як наслідок, дає можливість застосовувати їх в різноманітних галузях (математиці, біології, лінгвістиці тощо), а не тільки в логіці.

Між множиною та її елементом існує відношення належності. Належати до множини це означає бути носієм ознаки, на підставі якої ця множина утворена. Відношення належності позначається

Існує два найуживаніших способи задання множин. Перший полягає у простому перерахуванні елементів, що складають дану множину. Наприклад, множина арифметичних дій, множина планет Сонячної системи тощо. Відповідно записується: А = {х1, х2, х3, х.4}, В = {х1, х2, х3,... х9}.

Отже, цей спосіб ефективний, коли мають справу із скінченними множинами. Коли ж розглядаються нескінченні множини, той цей спосіб не підходить. У цих випадках користуються іншим способом, який полягає у заданні множини через характеристичну властивість. Характеристичною називається властивість, яка належить будь-якому елементу даної множини, і не належить жодному предмету, що не входить до неї. Записується це так:

Спеціально необхідно виділити універсальну множину, тобто множину, яка складається із усіх елементів досліджуваної предметної області. Позначається універсальна множина буквою "II", а графічно зображується множиною точок у середині прямокутника:

Окрім універсальної множини виділяють порожню множину, тобто множину, яка не містить жодного елемента (наприклад, "дерево, яке проводить електричний струм", "метал, який легший повітря" тощо) . Позначається порожня множина символом: θ .

Будь-яку частину множини називають підмножиною. Якщо універсальну множину задати характеристичною властивістю Q:

то множини А, В, С що є частинами універсальної множини и визначаються властивостями відповідно :

Якщо властивості, якими задані деяка множина і її підмножини співпадають, то ці множини будуть рівні. У цьому випадку говорять, що множина є частиною самої себе, або повною частиною. А у тому випадку, якщо властивість, якою задається деяка підмножина суперечить властивості за допомогою якої задана сама множина, то така підмножина буде порожньою. Тому порожня підмножина є частиною будь-якої множини, її ще називають "порожньою частиною".

Повна і порожня частини називаються невласними підмножинами. Решта підмножин є власними.

За формулою 2n можна вирахувати кількість підмножин будь-якої множини. (2 вказує на кількість невласних підмножин: саму множину, як частину самої себе; і порожню множину θ, а п - число елементів, що входить у множину. Наприклад, маємо множину "А" із трьох елементів (1, 2, 3}. Застосуємо формулу 2n для визначення кількості підмножин цієї множини: 23 = 8. Запишемо всі підмножини множини "А":

Відношення включення буває двох видів:

Сторінки


В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Логіка» автора Невідомо на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „Розділ VIII. Поняття“ на сторінці 3. Приємного читання.

Запит на курсову/дипломну

Шукаєте де можна замовити написання дипломної/курсової роботи? Зробіть запит та ми оцінимо вартість і строки виконання роботи.

Введіть ваш номер телефону для зв'язку, в форматі 0505554433
Введіть тут тему своєї роботи