Відповідь повинен дати реальний експеримент: потрібно, щоб екран являв собою сукупність детекторів, які вловлюють окремі частинки і вимірюють їхні маси й заряди. Такі досліди технічно можливі і дають однозначний результат: закінчуючи рух, кожна частинка потрапляє у визначену точку екрана. Тому й у нашому уявному експерименті, де розглядалося проходження частинок через отвір у діафрагмі, кожен окремий електрон буде спричинювати почорніння фотопластинки на невеликій ділянці.
Одна частинка не створює дифракційної картини. Усю картину можна одержати тільки завдяки потраплянню на пластинку пучка частинок. Електрон не поділяється на частини і повністю зберігає свою цілісність, тобто заряд, масу й інші характеристики.
У цьому виявляються корпускулярні властивості мікрочастинок. У той же час очевидним є і виявлення хвильових властивостей. Електрон після проходження отвору ніколи не потрапить на екран у тому місці, де повинен бути мінімум дифракційної картини; він може виявитися тільки в точках екрана поблизу дифракційних максимумів. При цьому вказати, в якому саме конкретному напрямку полетить дана частинка, в яку точку екрана вона потрапить, заздалегідь не можна.
Якщо взяти багато частинок, то почорніння фотопластинки свідчить про таку закономірність: більша частина частинок потрапить в зону головного максимуму; кількість частинок, що припадають на інші максимуми, убуває в міру зростання номера (порядку) максимуму. Для окремої частинки не можна вказати конкретну точку, але можна передбачити ймовірність її влучання в те чи інше місце екрана.
Ці результати, які ми обговорили, дуже нагадують події, що відбуваються в тирі. Незважаючи на бажання стрільця потрапити в центр мішені, ми ніколи не знаємо заздалегідь, в яке місце мішені потрапить кожна з куль. Після стрілянини отвори в мішені групуються в досить правильний овал, який дістав назву "еліпса розсіювання". Його форма залежить від багатьох причин.
Якщо ми візьмемо тепер точно таку ж мішень і знову зробимо 100 пострілів, то розташування отворів буде зовсім іншим, ніж на першій мішені, але кількість влучень у "десятку", "дев'ятку" і т.д. майже не зміниться. Звичайно, для гарного стрільця еліпс розсіювання буде маленьким, для поганого — великим, але для кожного окремого стрільця він залишиться незмінним.
Із цього простого прикладу видно, що "закони випадку" - не порожня гра слів. Звичайно, кожна куля потрапляє у випадкову точку мішені, яку не можна передбачити заздалегідь. Однак, коли йдеться про велику кількість пострілів, влучання утворюють настільки закономірну картину, що ми сприймаємо її як достовірну і зовсім забуваємо про ймовірність, що лежить в її основі.
Незвичні особливості законів випадку мають природне пояснення. Справді, постріл — дуже непростий процес. Ми не можемо або ж не вміємо вивчати його у всій складності й прагнемо довідатися тільки про кінцевий результат іспитів. Така зневага до деталей процесу не проходить даремно - тепер вірогідно ми можемо передбачити тільки усереднений результат численних однотипних іспитів, а для кожної окремої випадкової події ми спроможні вказати тільки ймовірний його результат.
Поширена хибна думка, що ймовірнісний опис руху менш повний, ніж строго причинний, класичний, з його поняттям траєкторії. З погляду класичної механіки, це саме так. Однак, якщо ми відмовимося від деяких її твердих вимог (наприклад, від знання початкових координат та імпульсів частинок), то класичний опис відразу стає недостатнім. На зміну йому приходить ймовірнісний опис, і в нових умовах він буде настільки ж вичерпним, оскільки повідомляє нам усі відомості про систему, які можна довідатися про неї за допомогою досліду.
Повернемося знову до пострілів по мішені в тирі і згадаємо причини, що змушують нас застосовувати теорію імовірності. Таких причин три:
· незалежність кожного наступного пострілу від попереднього;
· повна нерозрізненість окремих пострілів;
· випадковість результату будь-якого окремого пострілу, що виникає від незнання початкових умов кожного пострілу, тобто точної початкової координати і точного значення імпульсу кулі.
А тепер зазначимо, що всі три умови виконуються в атомних явищах і, зокрема, у дослідах із розсіювання електронів. Справді:
· електрон як частинка повинен розсіюватися незалежно від інших;
· електрони такі бідні на властивості (заряд, маса, спін — і це все!), що в квантовій механіці їх важко розрізнити, а разом з тим неможливо розрізнити й окремі акти розсіювання;
· і, нарешті, головне: точні значення координат та імпульсів не можна задати в принципі, оскільки ця заборона випливає із співвідношення невизначеностей Гейзенберга.
У таких умовах безглуздо визначати траєкторію кожного електрона. Замість цього ми повинні навчитися обчислювати ймовірність р(х) влучення електронів у певне місце х фотопластинки (чи, як прийнято говорити у фізиці, обчислювати функцію розподілу р(х).
Логіку міркування М. Борна зручно пояснити за допомогою деякої аналогії. Усі квантово-оптичні ефекти переконують нас у тому, що світло - це потік дискретних частинок — фотонів, у яких локалізовані маса, імпульс та енергія випромінювання. Взаємодія фотонів з речовиною, коли світло проходить через яку-небудь оптичну систему (наприклад, дифракційні грати), призводить до перерозподілу фотонів у просторі й виникнення дифракційної картини на екрані, розташованому на шляху світла, що пройшло крізь систему. Очевидно, що освітленість екрана в різних точках пропорційна сумарним енергіям фотонів, що потрапляють у ці точки за одиницю часу, тобто освітленість пропорційна ймовірності влучення фотона в певну точку екрана. З іншого боку, вирішення цієї дифракційної задачі на основі уявлень про хвильову природу світла показує, що освітленість пропорційна квадрату амплітуди світлової хвилі в даній точці екрана. Зіставлення цих міркувань дозволяє зробити висновок: квадрат амплітуди світлової хвилі в якій-небудь точні простору є мірою імовірності влучення фотонів у цю точку.
Тому "хвилі матерії" — це не звичайні матеріальні хвилі, як електромагнітні чи хвилі на поверхні моря, а хвилі особливі — це "хвилі ймовірності". Вони визначають імовірність розподілу частинок у просторі.
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Концепції сучасного природознавства» автора Автор невідомий на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „3.5 Квантова механіка“ на сторінці 6. Приємного читання.