Розділ «3.5 Квантова механіка»

Концепції сучасного природознавства

Підсумуємо деякі наші міркуванням про світлові кванти-фотони.

Усі факти, викладені в цьому розділі, є, здавалося б, переконливим доказом справедливості квантових (корпускулярних) уявлень про природу світла. Однак не слід забувати, що є не менш вагомі аргументи на користь того, що світло є хвильовим процесом (інтерференція, дифракція світла). Так що ж таке світло?

У. Брегг, один з тих, хто вперше здійснив дифракцію рентгенівських променів на кристалі, писав: "Невже ми повинні вважати, що світло складається з корпускул у понеділок, вівторок і середу, поки ми проводимо досліди з фотоефектом і ефектом Комптона, і уявляти собі його у вигляді хвиль у четвер, п'ятницю і суботу, коли ми працюємо з явищами дифракції й інтерференції?" Це питання можна перефразувати так: що таке світло — неперервні електромагнітні хвилі, які випромінює джерело, чи потік дискретних фотонів? Необхідність вдаватися в різних ситуаціях до різних, вза-ємовиключних понять видається штучною.

Такі подвійні властивості світла, однак, є тільки одним із проявів корпускулярно-хвильового дуалізму. Світло одночасно має властивості і хвилі, і частинки. Просто в різних експериментальних ситуаціях ми фіксуємо або хвильові, або корпускулярні властивості світла. У прояві тих чи інших властивостей є певна закономірність.

Щодо коротких хвиль (хвиль великих частот), то більш чітко виявляються його корпускулярні властивості: із цим пов'язане існування червоної межі фотоефекту й фотохімічних реакцій; хвильові властивості короткохвильового випромінювання виражені слабо — дифракцію рентгенівських променів удалася виявити тільки після того, коли як дифракційні ґрати було використано природний кристал. Для довгохвильового випромінювання квантові властивості виражені слабо, а основну роль відіграють його хвильові властивості. Саме в цій частині спектра спостерігаються явища інтерференції і дифракції.

Зараз ми не будемо детально обговорювати ситуацію, пов'язану з неоднозначністю властивостей світла — з його корпускулярно-хвильовим дуалізмом, і відкладемо обговорення цього питання в більш узагальненому вигляді.


3.5.3 Планетарний атом


Експериментальне підтвердження гіпотези про планетарний атом не лише не вирішило, а, навпаки, загострило основне питання: адже електродинаміка стверджує, що така система існувати не може; електрон, що обертається за її законами, неминуче впаде на ядро. Потрібно було робити вибір: або електродинаміка, або планетарний атом. Щоб вийти із цього скрутного становища, потрібний був Нільс Бор.

При вирішенні цієї здавалося б нерозв'язної проблеми Бор вчинив так, як Олександр Македонський з Гордієвим вузлом: він не розплутував його, а розрубав мечем.

Значення робіт Резерфорда, які підтвердили справедливість планетарної моделі атома, дуже влучно охарактеризував Н. Бор: "Вирішальним моментом в атомній моделі Резерфорда було те, що вона з усією ясністю показала: стійкість атомів не можна пояснити на основі класичної фізики, і квантовий постулат — це єдино можливий вихід з гострої дилеми. Саме ця гострота невідповідності змусила мене абсолютно повірити в правильність квантового постулату".

Бор відразу ж став прихильником планетарної моделі. Утім, через багато років, у 1922 році, він скаже Гейзенбергу: "Я ніколи не сприймав планетарну систему буквально...".

Ключем до вирішення проблеми атомної стійкості були прості закони, що визначають спектр випромінювання елементів.

У1913 році Н. Бор сформулював свої знамениті постулати.

1-ий постулат — про стаціонарні стани. В атомі існують орбіти, рухаючись по яких електрон не випромінює.

2-ий постулат - про квантові стрибки. Електрон випромінює світло, тільки переходячи з однієї стаціонарної орбіти на іншу, тобто дискретними порціями. Коли електрон знаходиться на орбіті з щонайнижчою енергією, йому нікуди переходити (якщо він не одержує енергію ззовні). Так було пояснено стійкість атомів.

Бор переосмислив формулу Ейнштейна для фотоефекту, припустивши, .що частоту випромінюваного світла визначає співвідношення:

Але як визначити умову, що визначає стаціонарну орбіту? У будь-якого кругового руху, крім радіуса орбіти й швидкості руху по ній, є ще одна характеристика — момент кількості руху І, або орбітальний момент. Він дорівнює добутку маси на швидкість і на радіус орбіти, тобто:

де n — ціле число: n - 1,2,3 ...

Ця умова дозволяє виділити стаціонарні орбіти (єдино можливі в атомі) з нескінченної кількості всіх, які тільки можна уявити. А оскільки в цьому виділенні основну роль відіграє квант дії h, то такий підхід називається квантуванням.

Незважаючи на незвичайність постулатів Бора, його теорія швидко набула визнання/тому що дозволяла групувати розрізнені раніше атомні явища навколо незрозумілої, але простої моделі.

Сторінки


В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Концепції сучасного природознавства» автора Автор невідомий на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „3.5 Квантова механіка“ на сторінці 2. Приємного читання.

Зміст

  • Передмова

  • Розділ 1. ПРИРОДОЗНАВСТВО, НАУКА, НАУКОВИЙ МЕТОД, ПІЗНАННЯ І ЙОГО СТРУКТУРА

  • 1.3 Загальнонаукові методи теоретичного пізнання

  • 1.4 Загальнонаукові методи, що застосовуються на емпіричному й теоретичному рівнях пізнання

  • Розділ 2. ЗАРОДЖЕННЯ, СТАНОВЛЕННЯ Й І РОЗВИТОК ПРИРОДОЗНАВСТВА

  • 2.1.2 Міфологія

  • 2.2 Становлення цивілізації

  • 2.2.3 Металургія

  • 2.2.4 Розвиток гірничої справи та видобування корисних копалин

  • 2.2.5 Розвиток домашніх промислів і становлення ремесла

  • 2.2.6 Еволюція суспільної свідомості. Раціональні знання

  • 2.2.7 Виникнення та становлення обміну

  • 2.2.8 Поділ праці

  • 2.2.9 Розвиток духовної культури

  • 2.2.10 Становлення писемності

  • 2.3 Географія та основні характеристики цивілізацій стародавнього сходу

  • 2.4 Давні цивілізації Європи

  • 2.5 Філософія і наука античного світу

  • 2.6 Наука середніх віків

  • 2.7 Природознавство в епоху Відродження

  • 2.7.4 Геометрична статика

  • 2.7.5 Кінематика

  • 2.7.6 Джордано Бруно: світоглядні висновки з коперниканізму

  • 2.7.7 Відкриття законів руху планет

  • 2.8 Виникнення класичної механіки

  • 2.8.3 Ньютонівська революція

  • 2.9 Від геометричного методу до аналітичної механіки

  • 2.10 Виникнення й розвиток електродинаміки

  • 2.10.4 Теорія електромагнітного поля Максвелла

  • 2.11 Основні досягнення природознавства XIX століття

  • Розділ З. СУЧАСНА ФІЗИЧНА КАРТИНА СВІТУ

  • 3.2 Теорія відносності

  • 3.3 Закон збереження енергії в макроскопічних процесах

  • 3.4 Другий закон термодинаміки та принцип зростання ентропії

  • 3.5 Квантова механіка
  • 3.6 Світ елементарних частинок

  • 3.6.2 Класифікація елементарних частинок

  • 3.6.3 Теорії елементарних частинок

  • 3.7 Проблеми енергетики (ядерні і термоядерні реактори)

  • Розділ 4. СУЧАСНА АСТРОФІЗИКА ТА КОСМОЛОГІЯ

  • 4.2 Галактика і квазари

  • 4.3 Народження та еволюція зірок

  • 4.4 Сонячна система

  • Розділ 5. СУЧАСНА БІОЛОГІЧНА КАРТИНА СВІТУ

  • 5.2 Теорія еволюції

  • 5.3 Розвиток життя на землі

  • 5.4 Походження людини

  • Розділ 6. УЧЕННЯ ПРО БІОСФЕРУ ТА НООСФЕРУ

  • 6.1.2 Утворення планетної системи

  • 6.1.3 Основні характеристики Землі

  • 6.1.4 Основні вимоги до умов, що забезпечують виникнення та розвиток життя

  • 6.1.5 Основні етапи хімічної еволюції, що передували абіогенезу

  • 6.1.6 Абіогенез

  • 6.1.7 Основні етапи еволюції живої природи

  • 6.1.8 Основні характеристики біосфери

  • 6.1.9 Виникнення атмосфери та гідросфери

  • 6.1.10 Основні характеристики атмосфери

  • 6.2 Ноосфера

  • 6.2.3 Перехід біосфери в ноосферу

  • 6.2.4 Умови, необхідні для становлення та існування ноосфери

  • 6.2.5 Наука як основний чинник ноосфери

  • 6.2.6 Проблеми становлення ноосфери

  • Рекомендовані теми рефератів

  • Список використаної літератури

  • Запит на курсову/дипломну

    Шукаєте де можна замовити написання дипломної/курсової роботи? Зробіть запит та ми оцінимо вартість і строки виконання роботи.

    Введіть ваш номер телефону для зв'язку, в форматі 0505554433
    Введіть тут тему своєї роботи