Розглянемо, наприклад, такий простий випадок. Космічний корабель, що рухається зі швидкістю, що становить три чверті швидкості світла, пролітає над вами, рухаючись на схід. У той же момент інший космічний корабель, що рухається із такою ж швидкістю, пролітає над вами, прямуючи на захід. У вашій системі відліку, пов'язаній з інерційною системою відліку Землі, ці два кораблі пролітають один повз одного з відносною швидкістю, що дорівнює півтори швидкості світла. Вони зближуються із цією швидкістю і розлітаються із цією швидкістю. Ніщо в теорії відносності не забороняє цього. Однак спеціальна теорія відносності наполягає на тому, що якщо ви летите в одному з кораблів, то, обчисливши відносну швидкість цих кораблів, ви повинні одержати значення, яке буде меншим від швидкості світла.
де с — швидкість світла.
Легко помітити, що коли швидкості кораблів незначні порівняно зі швидкістю світла, то ця формула дає результат, який майже збігається з тим, що виходить при додаванні двох швидкостей звичайним способом. Але якщо швидкості кораблів дуже великі, ця формула дає зовсім інший результат. Розглянемо граничний випадок і припустимо, що замість космічних кораблів рухаються два промені світла, що проходять над нами в протилежних напрямках. Земний спостерігач побачить, як вони розлітаються зі швидкістю 2 с, тобто з подвоєною швидкістю світла. Але якби він рухався разом з одним із цих променів, то, обчисливши відносну швидкість за наведеною вище формулою, він одержав би
що, звичайно, дає значення, що дорівнює с. Іншими словами, він побачив би інший промінь, що рухається від нього зі швидкістю світла.
Припустимо, що промінь світла проходить у нас над головою в той же момент, що й космічний корабель, який рухається в протилежному напрямку зі швидкістю и. В інерційній системі відліку Землі корабель і світло проходять один повз одного зі швидкістю с плюс v. Якщо вимірювати швидкість світла в інерційній системі відліку, пов'язаній з космічним кораблем, то в результаті знову одержимо с.
Поза сферою дії спеціальної теорії відносності, що має справу тільки з інсрційнми системами, усе-таки можна говорити про швидкість світла як про деяку абсолютну межу. Однак тепер це слід виразити інакше: немає такого способу, який дозволив би відправити сигнал від одного матеріального тіла до іншого зі швидкістю, що перевищує світлову. Поняття "сигнал" використовується тут у широкому розумінні цього слова. Воно містить у собі будь-який тип причинно-наслідкового зв'язку, що дозволяє переслати будь-яке повідомлення: посилання фізичного об'єкта, наприклад, або передавання будь-якого типу енергії, такої, як енергія звукових хвиль, електромагнітних хвиль, ударних хвиль у твердому тілі й так далі. Не можна відправити повідомлення на Марс зі швидкістю, що перевищує швидкість світла. Цього не можна зробити, написавши листа й відправивши його в ракеті, оскільки, як ми бачили раніше, відносна швидкість ракети завжди повинна бути меншою від швидкості світла. Якщо повідомлення закодувати й відправити за допомогою радіо або радара, то воно дійде зі швидкістю світла. Ніякий інший тип енергії не зможе забезпечити більш швидку передачу цього коду.
Хоч сигнал і не можна послати зі швидкістю, що перевищує швидкість світла, але можна спостерігати певні типи рухів, що будуть мати стосовно спостерігача надсвітлові швидкості. Уявіть собі гігантські ножиці з лезами, які сягають планети Нептун. Ножиці починають закриватися з постійною швидкістю. У міру того, як це відбувається, точка, в якій перетинаються краї лез, що ріжуть, буде рухатися до кінців ножиць з усе зростаючою швидкістю. Уявіть собі, що ви сидите на нерухомому стрижні, який скріплює обидва леза. Стосовно вашої інерційної системи відліку ця точка перетинання лез незабаром буде віддалятися від вас зі швидкістю, більшою за швидкість світла. Звичайно, тут відбувається рух не матеріального тіла, а геометричної точки.
Можливо, вам прийде в голову така думка: припустимо, що кільця ножиць знаходяться на Землі, а точка перетину лез — на Нептуні. Якщо ви злегка закриваєте ножиці, а потім відкриваєте, повторюючи це багаторазово, то точка перетину буде ходити вперед — назад. Чи не можна тепер передати сигнали на Нептун майже миттєво? Не можна, оскільки імпульс, що приводить у рух леза, повинен передаватися від молекули до молекули, а швидкість цього процесу повинна бути меншою від світлової. У загальній теорії відносності немає абсолютно твердих тіл. Інакше ви могли б просто взяти твердий стрижень довжиною від Землі до Нептуна й передавати повідомлення миттєво, примушуючи рухатися один кінець. Не існує способу, який дозволив би використовувати гігантські ножиці чи будь-який інший тип так званих абсолютно твердих об'єктів для передавання сигналу зі швидкістю, що перевищує швидкість світла.
Важливим наслідком спеціальної теорії відносності, який ми коротко розглянемо, є те, що за певних умов енергія переходить у масу, а за деяких інших умов навпаки — маса переходить в енергію. Раніше фізики вважали, що повна, кількість маси у Всесвіті ніколи не змінюється, як і ніколи не змінюється повна кількість енергії. Це виражалося законами "збереження маси" та "збереження енергії". Тепер обидва ці закони об'єднані в один простий закон "збереження маси — енергії".
Коли ракетні двигуни надають прискорення космічному кораблю, то частина енергії йде на збільшення релятивістської маси корабля. Якщо енергія передається кавнику шляхом нагрівання (при цьому прискорюються його молекули), вміст кавника справді важить дещо більше, ніж раніше. Коли кавник остигає, його маса зменшується. Заводячи годинник, ми надаємо йому енергії, і він у той же час дістає додатково невелику кількість маси. Коли завод закінчується, годинник втрачає цю масу. Ці збільшення й зменшення маси настільки нескінченно малі, що їх ніколи не враховують у звичайних фізичних розрахунках. Однак ці перетворення маси на енергію зовсім не мізерні, коли йдеться про роботу атомної електростанції.
Енергія, яку випромінює Сонце, має подібне походження. Унаслідок величезної сили ваги на Сонці газоподібний водень усередині нього зазнає настільки великого тиску й нагрівається до настільки високої температури, що атоми водню поєднуються, перетворюючись на гелій. У результаті деяка кількість маси перетворюється на енергію. Формула, що виражає співвідношення між масою й енергією, яка тепер відома кожному, така:
Ейнштейн одержав цей вираз зі своєї спеціальної теорії відносності. Із цієї формули випливає, що надзвичайно мала кількість маси здатна вивільнити колосальну кількість енергії. Життя на Землі не існувало б без сонячної енергії, так що, в певному розумінні, життя залежить від цієї формули. Може статися, що кінець життя на Землі також буде пов'язаний із цією формулою, якщо застосовувати її до вибуху атомної бомби. Не буде перебільшенням стверджувати, що навчитися давати раду тому, що виражається цією простою формулою, — найважливіша проблема із-поміж тих, котрі коли-небудь поставали перед людством.
Однак бомба — це тільки один найбільш вражаючий факт із-поміж багатьох, що підтверджують спеціальну теорію відносності. Експериментальні докази почали накопичуватися, ледь тільки висохло чорнило на статті Ейнштейна, написаній у 1905 р. У наш час це одна з найбільш грунтовно підтверджених теорій сучасної фізики. її щодня підтверджуюють у лабораторіях учені-атомники, які працюють з частинками, що рухаються зі швидкостями, близькими до швидкості світла. Чим швидше рухаються подібні частинки, тим більша сила необхідна для того, щоб збільшити їхню швидкість на задану величину; іншими словами, тим більша їхня релятивістська маса. Саме із цієї причини фізики продовжують створювати все більші й більші машини для прискорення частинок. Потрібні все сильніші поля, щоб перебороти масу частинок, що зростає в міру того, як їхня швидкість стає ближчою і ближчою до швидкості світла. Електрони тепер можна прискорювати до швидкості, що становить 0,999999999 швидкості світла. При цьому кожен електрон набуває маси (відносно інерційної системи відліку Землі), яка приблизно в сорок тисяч разів більша, ніж його маса спокою.
Коли яка-небудь частинка зіштовхується зі своєю античастинкою (частинкою, що має точно таку ж структуру, але протилежний електричний заряд), відбувається повна і взаємна їх анігіляція. Уся маса обох частинок цілком перетворюється на енергію випромінювання. У лабораторії цей процес допоки проводиться тільки з окремими частинками. Якщо фізикам коли-небудь вдасться створити антиречовину (речовину, побудовану з античастинок), то вони зможуть досягти піку у використанні атомної енергії. На космічному кораблі невелику кількість антиречовини, яка підтримується магнітними полями в завислому стані, можна з'єднувати потроху з речовиною, що забезпечить корабель енергією, достатньою для того, щоб нести його до зірок.
Спеціальна теорія відносності настільки повно підтверджена експериментально, що тепер важко знайти фізика, який би сумнівався в правильності цієї теорії.
3.2.6 Принцип еквівалентності
Матеріал, який ми розглядали дотепер, належить до так званої "спеціальної" теорії відносності. Перед тим, як ми завершимо обговорення сутності теорії відносності, нам необхідно коротко розглянути предмет "загальної" теорії відносності, хоч ми й не зможемо зробити цього з усією повнотою.
Дотепер нас цікавило тільки порівняння точок зору спостерігачів, які рухаються один відносно іншого з постійною швидкістю. Загальна теорія відносності має справу із тим, як буде сприймати закони фізики спостерігач, який зазнає прискорення. Зрозуміло, що в цьому випадку для спостерігача, який рухається, зовнішній світ буде здаватися іншим. Пасажир у потязі, який збільшує швидкість або різко гальмує, безсумнівно, помітить вплив цього прискорення. Яка природа його відчуттів? Відповідно до закону Ньютона, добуток маси на прискорення дорівнює силі. Щоб змусити нас рухатися разом з потягом, який набуває прискорення, сидіння й підлога вагона повинні діяти на нас з деякою силою. Без цієї сили всі предмети намагалися б рухатися рівномірно й прямолінійно і тому набували 6 відносно потяга прискорення в протилежному напрямку. Це те ж саме, як коли б у спокої перебував потяг, а на нас діяло силове поле, аналогічне полю тяжіння, що тягло б нас назад. Справді, у потязі, що рухається з постійним прискоренням, легко виникає ілюзія, що вагон нахилився й тому наша вага тягне нас назад.
Будь-яке прискорення створює такий же ефект, як і поле тяжіння. Уявімо, що ми знаходимося в закритій шухляді, схожій на кабіну ліфта, розташованій де-небудь у порожньому просторі, удалині від Землі й інших тіл, так що відсутні сили всесвітнього тяжіння. Тоді всі предмети в цій кабіні (шухляді) будуть вільно плавати. Якщо ми відіпхнемося ногами від підлоги, то почнемо рухатися вгору, поки не вдаримося об стелю. Цей стан речей нам уже знайомий з книг і кінофільмів про міжпланетні подорожі. Припустимо тепер, що раптово ми знову відчули свою вагу й зауважили, що предмети падають на нас. Це може мати два пояснення: або наша шухляда дійсно є кабіною ліфта і він почав прискорюватися в напрямку вгору, або ми можемо сказати, що кабіна наша все-таки перебуває у стані спокою (або рухається з постійною швидкістю), але ми знаходимося тепер поблизу Землі або якої-небудь іншої планети й на нас діє тяжіння.
Ми не могли 6 відповісти на це питання, навіть якби в стелі було маленьке вікно й через нього ми могли 6 бачити канат, прив'язаний до вершини нашої кабіни, і видно було б, що він натягнутий. Очікувати цього результату можна було б у випадку будь-якої точки зору: як у результаті дії прискорення, так і внаслідок підтримки нашої кабіни у завислому стані завдяки дії сил тяжіння.
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Концепції сучасного природознавства» автора Автор невідомий на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „3.2 Теорія відносності“ на сторінці 7. Приємного читання.