Розділ «3.2 Теорія відносності»

Концепції сучасного природознавства

Чи можна сказати, що швидкість людини стосовно Землі (57 км/год.) є її справжньою, абсолютною швидкістю? Ні, тому що існують й інші, ще більш великомасштабні системи відліку. Рухається сама Земля. Вона обертається навколо своєї осі й у той же час рухається навколо Сонця. Сонце разом із усіма своїми планетами рухається всередині Галактики. Галактика обертається й рухається відносно інших галактик. Галактики, у свою чергу, утворюють скупчення галактик, що рухаються одна відносно іншої. Ніхто не знає, наскільки далеко можна продовжити цей перелік рухів. Немає очевидного способу визначити абсолютний рух якого-небудь предмета; інакше кажучи, немає такої фіксованої, остаточної системи відліку, стосовно якої можна було б вимірювати всі рухи. Рух і спокій, подібно великому й малому, швидкому й повільному, верху й низу, лівому й правому, очевидно, цілком відносні. Немає іншого способу виміряти рух якогось предмета, окрім як порівняти його рух з рухом іншого предмета.

На жаль, це не так просто! Якби можна було обмежитися лише тим, що вже сказано про відносність руху, то Ейнштейну не довелося б створювати теорію відносності.

Причина труднощів у тому, що існує два дуже простих способи виявлення абсолютного руху. В одному з методів використовуються властивості світла, в іншому — різноманітні явища інерції, що виникають при зміні траєкторії або швидкості руху предмета, який рухається. Спеціальна теорія відносності Ейнштейна має справу з першим методом, а загальна теорія відносності — із другим. У цьому і у двох наступних розділах розглядатиметься перший метод, який використовує властивості світла й може стати ключем до розуміння абсолютного руху.

У дев'ятнадцятому столітті, ще до Ейнштейна, фізики вважали, що простір наповнений особливою нерухомою і невидимою речовиною — ефіром. Часто його називали "світлоносним" ефіром, маючи на увазі, що він є носієм світлових хвиль. Ефір заповнював увесь Всесвіт.

Він проникав у всі матеріальні тіла. Якби вдалося відкачати з-під скляного дзвона все повітря, то він наповнився б ефіром. А як інакше світло могло 6 пройти через вакуум? Світло — це хвильовий рух. Отже, повинно існувати щось, у чому відбуваються коливання. Сам ефір, хоч у ньому й відбуваються коливання, не рухається стосовно матеріальних предметів, скоріше, усі предмети рухаються крізь нього, подібно руху сита у воді. Абсолютний рух зірки, планети або якого-небудь іншого предмета стане зрозумілішим (у цьому фізики тієї епохи були впевнені), якщо цей рух розглядати відносно такого нерухомого, невидимого ефірного моря.

Але, запитаєте ви, якщо ефір — нематеріальна субстанція, яку не можна побачити, почути, відчути на дотик, запах чи спробувати на смак, то як можна розглядати рух, наприклад, Землі відносно нього? Відповідь проста. Вимірювання можна виконати, порівнявши рух Землі з рухом світлового пучка.

Щоб зрозуміти це, розглянемо спочатку природу світла. Насправді світло — це лише невелика видима частина спектра електромагнітного випромінювання, до складу якого входять радіохвилі, ультракороткі хвилі, інфрачервоне світло, видиме світло, ультрафіолетове світло й гамма-промені. Ми використовуємо слово "світло" для позначення будь-якого типу електромагнітного випромінювання, тому що це слово коротше, ніж "електромагнітне випромінювання". Світло — хвильовий рух. Фізики минулого вважали, що вивчати такий рух, не беручи одночасно до уваги матеріальний ефір, настільки ж абсурдна справа, як і досліджувати хвилі на воді, забуваючи про саму воду.

Якщо вистрілити з реактивного літака, що рухається, у напрямку його руху, то швидкість кулі відносно Землі буде більшою, ніж швидкість кулі, випущеної з рушниці на Землі. Швидкість кулі відносно Землі є результатом додавання швидкості літака й швидкості кулі. У випадку ж світла швидкість пучка не залежить від швидкості предмета, який це світло випромінює. Цей факт переконливо довели експериментально наприкінці дев'ятнадцятого й на початку двадцятого століття, і з того часу він не одноразово підтверджувався. Останню перевірку було проведено в 1955 р. радянськими астрономами, які використовували світло від протилежних країв Сонця, яке постійно перебуває в обертальному русі. Один край нашого Сонця завжди рухається до нас, а інший — у протилежний бік. Було встановлено, що світло від обох країв приходить до Землі з однаковою швидкістю. Подібні досліди проводилися і десятиліття назад зі світлом від подвійних зірок, які теж обертаються. Незважаючи на рух джерела, швидкість світла в порожнечі завжди однакова: вона становить майже 300000 км/сек.

Очевидно, цей факт дає ученому (будемо називати його спостерігачем) спосіб для обчислення своєї абсолютної швидкості. Якщо світло поширюється через нерухомий, незмінний ефір з відомою швидкістю с і якщо ця швидкість не залежить від швидкості руху джерела, то швидкість світла може слугувати еталоном для визначення абсолютного руху спостерігача. Спостерігач, який рухається в тому ж напрямку, що й пучок світла, повинен був би виявити, що пучок проходить повз нього зі швидкістю, меншою ніж с; спостерігач же, який рухається назустріч пучку світла, повинен був би відзначити, що пучок наближається до нього зі швидкістю, більшою ніж с. Іншими словами, результати вимірювання швидкості світла повинні були 6 змінюватися в залежності від руху спостерігача відносно пучка. Ці зміни відображали 6 його (спостерігача) справжній, абсолютний рух крізь ефір.

Описуючи це явище, фізики часто вдаються до поняття "ефірного вітру". Щоб зрозуміти зміст цього терміна, розглянемо знову потяг, який рухається. Ми встановили, що швидкість людини, яка рухається всередині потяга зі швидкістю 3 км/год., завжди однакова стосовно потяга й не залежить від того, у бік локомотива чи до кінця потяга вона йде. Це справедливо і для швидкості звукових хвиль усередині закритого вагона. Звук — хвильовий рух, який передається завдяки молекулам повітря. Оскільки повітря міститься всередині вагона, звук усередині вагона буде поширюватися на північ з тією ж швидкістю (стосовно вагона), що і на південь.

Стан речей зміниться, якщо ми перейдемо із закритого пасажирського вагона на відкриту платформу. Повітря вже не ізольоване всередині вагона. Якщо потяг рухається зі швидкістю 60 км/год, то уздовж платформи у зворотному напрямку дме вітер зі швидкістю 60 км/год. Через цей вітер швидкість звуку в напрямку від кінця до початку вагона буде менша, ніж нормальна. Швидкість звуку у зворотному напрямку буде більшою від нормальної.

Фізики дев'ятнадцятого століття були впевнені, що ефір повинен поводитися, як і вітер, що дме на платформі, яка рухається. Хіба може бути інакше? Якщо ефір нерухомий, то будь-який предмет, який рухається в ньому, повинен зіткнутися з ефірним вітром, що дме в протилежному напрямку. Світло — хвильовий рух у нерухомому ефірі. На швидкість світла, яка вимірюється з предмета, що рухається, повинен, звичайно, впливати ефірний вітер.

Земля переміщується в просторі по своїй орбіті навколо Сонця зі швидкістю близько ЗО км/сек. Цей рух, розмірковували фізики, повинен спричинити ефірний вітер, що дме назустріч Землі в проміжках між її атомами зі швидкістю ЗО км/сек. Щоб виміряти абсолютний рух Землі (швидкість її руху щодо нерухомого ефіру), необхідно лише виміряти швидкість, з якою світло проходить якусь певну відстань на земній поверхні туди й назад. Унаслідок впливу ефірного вітру світло буде рухатися в одному напрямку швидше, ніж в іншому. Порівнявши швидкості світла, випроміненого в різних напрямках, можна було б обчислити абсолютний напрямок і швидкість руху Землі в будь-який заданий момент. Цей експеримент уперше запропонував у 1875 р за 4 роки до народження Ейнштейна великий шотландський фізик Джемс Кларк Максвелл.

У 1881 p. Альберт Абрагам Майкельсон, на той час молодий офіцер Військово Морського флоту Сполучених Штатів, провів саме такий експеримент. Майкельсон народився в Німеччині, його батьки — поляки. Батько Майкельсона переїхав до Америки, коли сину було два роки. Після закінчення Військово-Морської академії в Ан-наполісі й дворічної морської служби Майкельсон починає викладати фізику й хімію в цій же академії. Узявши тривалу відпустку, він їде навчатися до Європи. У Берлінському університеті, у лабораторії відомого німецького фізика Германа Гельмгольца, молодий Майкельсон уперше спробував виявити ефірний вітер. На превеликий подив, у жодному напрямку компаса він не знайшов розбіжностей у швидкості, з якою світло проходило шлях туди й назад. Це було схоже на те, як нібито риба відкрила б, що вона може плисти в будь-якому напрямку в морі, не відчуваючи руху води щодо свого тіла; або як нібито пілот, що летить з відкритим ковпаком кабіни літака, не помічає вітру, що дме йому в обличчя.

Видатний австрійський фізик Ернст Мах уже тоді критикував уявлення про абсолютний рух крізь ефір. Прочитавши опублікований звіт Майкельсона про дослід, він негайно зробив висновок, що уявлення про ефір треба відкинути. Однак більшість фізиків відмовилися зробити такий сміливий крок. Прилад Майкельсона був недосконалий, було достатньо підстав вважати, що експеримент, проведений за допомогою більш чутливої апаратури, дасть позитивний результат. Так вважав і сам Майкельсон. Не знайшовши помилок у своєму досліді, він прагнув повторити його.

Майкельсон відмовився від військово-морської служби й обійняв посаду професора в Кейсівській школі прикладних наук (тепер Кейсівський університет) у Клівленді, штат Огайо. Поблизу, в університеті Західної Території, викладав хімію Едвард Вільям Морлі. Двоє чоловіків стали добрими друзями. "Зовні, — пише Бернард Яффі в книзі "Майкельсон і швидкість світла", — ці двоє учених являли собою зразок контрасту... Майкельсон був красивий, ошатний, завжди бездоганно виголений. Морлі, м'яко кажучи, був недбалий в одязі і являв собою приклад незібраного професора... Він дозволяв волоссю відростати доти, поки воно не починало завиватися на плечах, і був власником безладної рудої щетини, яка росла майже до вух".

У 1887 р. в підвалі лабораторії Морлі вчені разом зробили другу, більш точну спробу виявити невловимий ефірний вітер. їх досвід, відомий як експеримент Майкельсона-Морлі, - один із поворотних пунктів у сучасній фізиці.

Прилад було встановлено на квадратній кам'яній плиті зі сторонами приблизно півтора метра й товщиною понад ЗО см. Плита плавала в рідкій ртуті. Це виключало вібрації, підтримувало горизонтальність плити й дозволяло легко повертати її навколо центральної осі. Система дзеркал спрямовувала пучок світла у потрібному напрямку, дзеркала відбивали пучок туди й назад в одному напрямку так, що він робив вісім пробігів. (Це було зроблено для того, щоб максимально подовжити шлях, зберігши розміри приладу такими, щоб він міг легко обертатися.) У той же час інша система дзеркал посилала пучок на вісім пробігів у напрямку, що утворював прямий кут з першим пучком.

Передбачалося, що коли плита буде повернута так, що .один з пучків буде пробігати туди й назад паралельно ефірному вітру, то пучок буде робити рейс за більший проміжок часу, ніж інший пучок, що проходить таку ж відстань перпендикулярно вітру. Спочатку здавалося, що повинно справджуватися протилежне. Розглянемо світло, що поширюється за вітром і проти вітру. Чи не буде вітер збільшувати швидкість на одному шляху настільки ж, наскільки зменшує її на іншому? Якщо так, то прискорення й гальмування компенсували б одне одного й час, витрачений на весь шлях, був би точно таким же, як у випадку, коли ніякого вітру не було зовсім.

Справді, вітер буде збільшувати швидкість в одному напрямку на точно таку ж величину, на яку зменшуватиме її в іншому, але — і це найважливіше — вітер буде зменшувати швидкість протягом більшого проміжку часу. Обчислення показують, що на подолання повного шляху проти вітру затрачається більше часу, ніж за відсутності вітру. Вітер буде чинити дію, що сповільнює, і на пучок, що поширюється під прямим кутом до нього. У цьому також легко переконатися.

Сторінки


В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Концепції сучасного природознавства» автора Автор невідомий на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „3.2 Теорія відносності“ на сторінці 2. Приємного читання.

Зміст

  • Передмова

  • Розділ 1. ПРИРОДОЗНАВСТВО, НАУКА, НАУКОВИЙ МЕТОД, ПІЗНАННЯ І ЙОГО СТРУКТУРА

  • 1.3 Загальнонаукові методи теоретичного пізнання

  • 1.4 Загальнонаукові методи, що застосовуються на емпіричному й теоретичному рівнях пізнання

  • Розділ 2. ЗАРОДЖЕННЯ, СТАНОВЛЕННЯ Й І РОЗВИТОК ПРИРОДОЗНАВСТВА

  • 2.1.2 Міфологія

  • 2.2 Становлення цивілізації

  • 2.2.3 Металургія

  • 2.2.4 Розвиток гірничої справи та видобування корисних копалин

  • 2.2.5 Розвиток домашніх промислів і становлення ремесла

  • 2.2.6 Еволюція суспільної свідомості. Раціональні знання

  • 2.2.7 Виникнення та становлення обміну

  • 2.2.8 Поділ праці

  • 2.2.9 Розвиток духовної культури

  • 2.2.10 Становлення писемності

  • 2.3 Географія та основні характеристики цивілізацій стародавнього сходу

  • 2.4 Давні цивілізації Європи

  • 2.5 Філософія і наука античного світу

  • 2.6 Наука середніх віків

  • 2.7 Природознавство в епоху Відродження

  • 2.7.4 Геометрична статика

  • 2.7.5 Кінематика

  • 2.7.6 Джордано Бруно: світоглядні висновки з коперниканізму

  • 2.7.7 Відкриття законів руху планет

  • 2.8 Виникнення класичної механіки

  • 2.8.3 Ньютонівська революція

  • 2.9 Від геометричного методу до аналітичної механіки

  • 2.10 Виникнення й розвиток електродинаміки

  • 2.10.4 Теорія електромагнітного поля Максвелла

  • 2.11 Основні досягнення природознавства XIX століття

  • Розділ З. СУЧАСНА ФІЗИЧНА КАРТИНА СВІТУ

  • 3.2 Теорія відносності
  • 3.3 Закон збереження енергії в макроскопічних процесах

  • 3.4 Другий закон термодинаміки та принцип зростання ентропії

  • 3.5 Квантова механіка

  • 3.6 Світ елементарних частинок

  • 3.6.2 Класифікація елементарних частинок

  • 3.6.3 Теорії елементарних частинок

  • 3.7 Проблеми енергетики (ядерні і термоядерні реактори)

  • Розділ 4. СУЧАСНА АСТРОФІЗИКА ТА КОСМОЛОГІЯ

  • 4.2 Галактика і квазари

  • 4.3 Народження та еволюція зірок

  • 4.4 Сонячна система

  • Розділ 5. СУЧАСНА БІОЛОГІЧНА КАРТИНА СВІТУ

  • 5.2 Теорія еволюції

  • 5.3 Розвиток життя на землі

  • 5.4 Походження людини

  • Розділ 6. УЧЕННЯ ПРО БІОСФЕРУ ТА НООСФЕРУ

  • 6.1.2 Утворення планетної системи

  • 6.1.3 Основні характеристики Землі

  • 6.1.4 Основні вимоги до умов, що забезпечують виникнення та розвиток життя

  • 6.1.5 Основні етапи хімічної еволюції, що передували абіогенезу

  • 6.1.6 Абіогенез

  • 6.1.7 Основні етапи еволюції живої природи

  • 6.1.8 Основні характеристики біосфери

  • 6.1.9 Виникнення атмосфери та гідросфери

  • 6.1.10 Основні характеристики атмосфери

  • 6.2 Ноосфера

  • 6.2.3 Перехід біосфери в ноосферу

  • 6.2.4 Умови, необхідні для становлення та існування ноосфери

  • 6.2.5 Наука як основний чинник ноосфери

  • 6.2.6 Проблеми становлення ноосфери

  • Рекомендовані теми рефератів

  • Список використаної літератури

  • Запит на курсову/дипломну

    Шукаєте де можна замовити написання дипломної/курсової роботи? Зробіть запит та ми оцінимо вартість і строки виконання роботи.

    Введіть ваш номер телефону для зв'язку, в форматі 0505554433
    Введіть тут тему своєї роботи