Я вже описував звичайний поділ клітини на дві нові, кожна з яких отримує повну копію усіх 46-ти хромосом. Цей звичайний поділ клітин називається мітозом. Але існує інший тип поділу клітин, що називається мейозом. Він відбувається лише під час вироблення статевих клітин: сперматозоїдів або яйцеклітин. Сперматозоїди та яйцеклітини є унікальними серед наших клітин, бо замість 46-ти хромосом вони мають лише 23. Це, певна річ, рівно половина від 46-ти, що зручно для з’єднування при статевому заплідненні, коли створюється новий організм! Мейоз є особливим різновидом поділу клітини, що відбувається лише в яєчках та яєчниках, де клітина з повним подвійним набором із 46-ти хромосом ділиться, формуючи статеві клітини з одинарним набором із 23-х хромосом (для ілюстрації я весь час використовую потрібну кількість для організму людини).
Сперматозоїд із його 23-ма хромосомами утворюється завдяки мейотичному поділові однієї зі звичайних 46-хромосомних клітин у яєчку. Які саме хромосоми закладаються в кожен конкретний сперматозоїд? Дуже важливо, щоби він отримав не просто якісь 23 старі хромосоми: в ньому не мають опинитися дві копії 13-го тому і жодної 17-го тому. Теоретично, індивід може забезпечити один зі своїх сперматозоїдів хромосомами, що походять, скажімо, цілковито від його матері: томами 1b, 2b, 3b і т. д. аж до 23b. У такому маловірогідному випадку дитина, зачата таким сперматозоїдом, успадкувала б половину своїх генів від бабусі з боку батька і жодного від дідуся з боку батька. Але насправді такого загального цільнохромосомного розподілу не відбувається. Реальність значно складніша. Пам’ятайте, що ми уявляємо собі томи (хромосоми) у вигляді скорозшивачів. Відбувається те, що під час формування сперматозоїда певні сторінки або чи не цілі стоси з багатьох сторінок вилучаються і міняються місцями з відповідними стосами альтернативних томів. Таким чином один конкретний сперматозоїд може скласти свій 1-й том, узявши перші 65 сторінок з тому 1a, а з 66-ї сторінки і до самого кінця — з тому 1b. Інші 22 томи цього сперматозоїда можуть бути організовані подібним чином. Тому кожний сперматозоїд індивіда є унікальним, навіть попри те, що всі інші зібрали свої 23 хромосоми з частинок того самого набору з 46-ти хромосом. Яйцеклітини в яєчниках формуються схожим чином і також усі є унікальними.
Реальна механіка цього змішування цілком зрозуміла. Під час виробництва сперматозоїда (або яйцеклітини) частинки кожної батьківської хромосоми фізично від’єднуються від інших та міняються місцями із суто відповідними їм частинками материнської хромосоми. (Не забувайте, що ми маємо на увазі хромосоми, похідні від батька індивіда, що виробляє сперматозоїди, тобто, від дідуся з боку батька дитини, що її, зрештою, зачинають цим сперматозоїдом). Процес обміну ділянками хромосоми називається кросинговером і вельми важливий для цілої теми цієї книги. Він означає, що якби ви вирішили роздивитися під мікроскопом хромосоми свого власного сперматозоїда (чи яйцеклітини, якщо ви — жінка), ви б змарнували час, намагаючись ідентифікувати хромосоми, що походять від вашого батька, і хромосоми, що від вашої матері. Цим вони значно відрізняються від звичайних клітин тіла (див. вище). Будь-яка хромосома у сперматозоїді нагадує ковдру з клаптиків, певну мозаїку з материнських і батьківських генів.
Ось тут метафора сторінки, що її ми використовуємо для опису гена, починає блякнути. В скорозшивач можна вставити, з нього можна вилучити або замінити всю сторінку цілком, але не її частину. Проте генний комплекс є лише довгою низкою нуклеотидів без жодного видимого поділу на окремі сторінки. Звісно, існують особливі символи для ПОЧАТКУ та ЗАКІНЧЕННЯ повідомлення БІЛКОВОГО ЛАНЦЮГА, записаного тою самою чотирилітерною абеткою, що й білкові повідомлення. Між цими двома пунктуаційними позначками закодовані інструкції для створення одного білка. За бажанням, можна визначити окремий ген як послідовність нуклеотидів, що лежить між символом ПОЧАТКУ і КІНЦЯ та кодує один білковий ланцюг. Визначену таким чином одиницю запропонували називати словом цистрон, і дехто використовує його в парі зі словом ген. Але кросинговер не визнає кордонів між цистронами. Розриви можуть виникати і в самих цистронах, а не лише між ними. Це виглядає так, наче архітектурні плани були написані не на сторінках, а на 46-ти сувоях. Цистрони не мають сталої довжини. Єдина можливість визначити, де закінчується один цистрон і починається наступний, — це прочитати символи на сувої, знайшовши позначки КІНЦЯ і ПОЧАТКУ ПОВІДОМЛЕННЯ. Кросинговер виявляється в тому, що з відповідних батьківських та материнських сувоїв вирізаються і міняються місцями певні ділянки, не зважаючи на те, що на них написано.
У назві цієї книги слово «ген» означає не певний цистрон, а щось більш витончене. Моє визначення сподобається не всім, але загальновизнаної характеристики гена не існує. Навіть якби й була, жодне визначення не є непорушним. Ми можемо визначати те чи інше слово на власний розсуд, але за умови, що робитимемо це чітко й однозначно. Визначення, що його хочу навести я, належить Дж. К. Вільямсові[10]. Ген визначається як будь-яка частина хромосомного матеріалу, що потенційно зберігається достатньою кількістю поколінь, щоби стати одиницею природного добору. В попередньому розділі ген називався реплікатором з високою точністю копіювання. Точність копіювання є синонімом довговічності у формі копій, і я називатиму це просто довговічністю. Така дефініція потребує певного обґрунтування.
Яким би не було визначення, ген має становити собою ділянку хромосоми. Річ лише в тім, наскільки вона велика — скільки сувою займає? Уявіть довільну послідовність сусідніх кодових літер на сувої. Назвімо цю послідовність генетичною одиницею. Це може бути послідовність лише з десяти літер всередині одного цистрона, з восьми цистронів, може починатися й закінчуватись у межах цистрона. Вона накладатиметься на інші генетичні одиниці, включатиме менші одиниці, а також формуватиме частину більшої одиниці. Неважливо, яка вона — довга або коротка, для цієї книги вона є тим, що ми називаємо генетичною одиницею. Це лише ділянка хромосоми, жодним чином фізично не відділена від решти хромосоми.
А тепер дещо важливе. Чим коротша генетична одиниця, тим довше — протягом поколінь — вона має шанси прожити. Зокрема, існує менша вірогідність бути розщепленою якимось кросинговером. Вважаймо, що вся хромосома в середньому зазнає одного кросинговеру при кожному утворенні сперматозоїда або яйцеклітини через мейотичний поділ, і цей кросинговер може відбуватися на будь-якій її ділянці. Якщо ми візьмемо дуже велику генетичну одиницю, скажімо, десь як половина довжини хромосоми, то існує 50-відсоткова вірогідність розщеплення цієї одиниці при кожному мейозі. Якщо ж генетична одиниця, що її ми маємо на увазі, складає лише один відсоток від довжини хромосоми, то можна вважати, що вона має лише 1-відсоткову вірогідність розщеплення під час будь-якого мейотичного поділу. Тобто, що очікуватимемо виживання цієї одиниці протягом великої кількості поколінь нащадків індивіда. Один цистрон, швидше за все, складає значно менше за один відсоток довжини хромосоми. Навіть від групи з кількох сусідніх цистронів варто сподіватися виживання протягом багатьох поколінь, перш ніж вона буде розщеплена кросинговером.
Середню тривалість життя генетичної одиниці зручно подати у поколіннях, що їх, зі свого боку, можна перевести в роки. Якщо ми візьмемо за свою умовну генетичну одиницю всю хромосому, її життя триватиме протягом лише одного покоління. Уявімо, що це ваша хромосома 8a, успадкована від вашого батька. Вона з’явилась усередині одного з його яєчок невдовзі перед вашим зачаттям. До того, протягом усієї історії світу, її ніколи не існувало. Вона була створена процесом мейотичного перетасування, злиттям ділянок хромосоми від вашої бабусі з боку батька та вашого дідуся з цього ж боку і розташована всередині певного конкретного сперматозоїда. Тобто, вона унікальна. Цей сперматозоїд — один із кількох мільйонів, частина величезної армади крихітних суден, що усі разом запливли до вашої матері. Цей конкретний сперматозоїд (за умови, що у вас нема двояйцевого близнюка) один з усієї флотилії знайшов гавань в одній з яйцеклітин вашої матері — ось через що ви існуєте. Генетична одиниця, про яку мова, — ваша хромосома 8a, починає реплікуватися разом з усією рештою вашого генетичного матеріалу. Тепер вона існує в дуплікованій формі у всьому вашому організмі. Але, коли ви захочете мати дітей, ця хромосома буде розщеплена при виробництві яйцеклітин (або сперматозоїдів). Її частинки перемішаються з частинками вашої материнської хромосоми 8b. В будь-якій статевій клітині буде створена нова хромосома 8. Можливо, вона стане «кращою» за стару, а, може, й «гіршою», але, якщо не брати до уваги доволі малоймовірні збіги, очевидно іншою, унікальною. Таким чином, тривалість життя хромосоми складає одне покоління.
А як щодо тривалості життя меншої генетичної одиниці, скажімо, 1/100 довжини вашої хромосоми 8a? Ця одиниця теж походить від вашого батька, але, вірогідно, була створена не в його організмі. Згідно з нашими попередніми роздумами, є 99-відсоткова вірогідність, що він отримав її саме таку від одного зі своїх батьків. Уявімо, що це була його мати, ваша бабуся з боку батька. Отже, знову є 99-відсоткова вірогідність, що вона успадкувала цю одиницю від одного зі своїх батьків. Якщо простежити за походженням будь-якої малої генетичної одиниці аж до її початків, ми врешті натрапимо на її безпосереднього творця. На якомусь певному етапі вона колись була створена всередині яєчка чи яєчника одного з ваших предків.
Дозвольте зайвий раз нагадати, що я використовую слово «створити» у досить специфічному значенні. Менші субодиниці, що складають генетичну одиницю, про яку йде мова, могли існувати вже давно. Наша ж генетична одиниця була створена в певний час саме в тому сенсі, що конкретної схеми субодиниць, які її визначають, досі не існувало. Саме створення могло статися достатньо нещодавно, скажімо, в одного з ваших дідусів. Але якщо ми говоримо про дуже малу генетичну одиницю, вона могла з’явитися у значно давнішого предка, можливо, мавпоподібного, що навіть ще не став людиною. Щобільше, ця мала генетична одиниця всередині вас здатна так само довго проіснувати ще в майбутньому, пройшовши неушкодженою крізь довгий перелік ваших нащадків.
Пам’ятайте також, що нащадки будь-якого індивіда складають не пряму лінію, а розгалужену. Хто б із ваших предків не «створив» конкретну коротку ділянку хромосоми 8а, він чи вона вірогідно мали ще нащадків, окрім вас. Одна з ваших генетичних одиниць може виявитися також у вашого троюрідного брата. Вона може бути у мене, у президента, у вашого собаки, адже ми всі маємо далеких спільних предків, якщо добряче пошукати. Крім того, така сама одиниця могла випадково скомпонуватись незалежним чином кілька разів: з малими одиницями збіг трапляється часто. Але навіть ваш близький родич навряд чи має цілу хромосому, що цілковито ідентична вашій. Чим менша генетична одиниця, тим імовірніше, що її матиме також інша людина. Отже, чимало шансів на те, що вона виникне у вигляді численних копій.
Випадкове об’єднання вже існуючих субодиниць завдяки кросинговеру є звичним способом формування нової генетичної одиниці. Інший спосіб, хоч і вкрай рідкісний, але вельми важливий для еволюції, називається точковою мутацією. По суті, мова йде про помилку, десь так, як неправильно надрукована літера в книзі. Трапляється вона рідко, але, вочевидь, чим довша генетична одиниця, тим більше шансів на те, що вона буде змінена мутацією.
Інший рідкісний вид помилки або мутації, що має важливі довготривалі наслідки, називається інверсією. Частинка хромосоми відділяється від неї з обох боків, обертається у протилежному напрямку та знову стає на місце в такому вигляді. Якщо продовжити колишню аналогію, відбувається певна зміна нумерації сторінок у книзі. Іноді частинки не просто інвертують, а знову приєднуються до хромосоми в якомусь іншому місці або навіть до іншої хромосоми. Це наче перенесення певних сторінок тексту з однієї книги до іншої. Важливість такої помилки полягає в тому, що попри свою катастрофічність, іноді вона призводить до щільного зчеплення частинок генетичного матеріалу, що здатні добре працювати разом. Уявіть, що за рахунок інверсії будуть наближені між собою два цистрони, що мають позитивний вплив лише за одночасної присутності, бо певним чином доповнюють або підсилюють один одного. Тоді природний добір може схилитися на користь сформованої таким чином нової «генетичної одиниці», і вона пошириться в майбутній популяції. Цілком можливо, що комплекси генів роками десь саме так потужно перебудовувались або, за нашою аналогією, «редагувалися».
Один із найяскравіших прикладів цього процесу стосується явища, відомого як мімікрія. Деякі метелики огидні на смак. Зазвичай вони мають яскраве й добре помітне забарвлення, що його птахи сприймають як попередження і уникають їсти таких метеликів. Цим користуються інші види метеликів, що не мають огидного смаку. Вони імітують несмачних, від самого народження нагадуючи їх забарвленням та формою (але не смаком), через що вводять в оману навіть натуралістів, не лише птахів. Птах, що хоч раз скуштував несмачного метелика, схильний уникати всіх комах, що виглядають так само. Це стосується й імітаторів, а тому гени мімікрії легко проходять природний добір. Саме так відбувається еволюція мімікрії.
Існує багато різних видів огидних на смак метеликів, і вони не всі схожі між собою. Імітатор не може нагадувати їх усіх: він має пристосуватися до якогось одного несмачного виду. Загалом будь-який конкретний вид імітатора спеціалізується на вдаванні одного конкретного несмачного виду. Але є й такі види імітаторів, що вдаються до чогось більш дивного: деякі окремі представники певного виду імітують один несмачний вид, а інші — якийсь інший. Якийсь проміжний вид або той, що намагався б імітувати обидва, дуже скоро б з’їли, але такі проміжні види ніколи не народжуються. Так само, як індивіди однозначно визначаються за статтю, метелики імітують якийсь один несмачний вид. Хоча один метелик може імітувати вид А, тоді як його рідний брат імітуватиме вид B.
Схоже, що те, який саме вид імітуватиметься, визначає один-однісінький ген. Але як він визначає всі різнобічні аспекти мімікрії — колір, форму, схему плям, ритм польоту? Відповідь полягає в тому, що один ген у розумінні цистрона, мабуть, на це не здатен. Але через несвідоме і автоматичне «редагування», що досягається завдяки інверсії та іншим випадковим перетасуванням генетичного матеріалу, великий кластер колись окремих генів збирається разом у хромосомі в пов’язану між собою групу. Весь цей кластер поводиться як один ген (по суті, за нашим визначенням, він і є тепер одним геном), до того ж має «алель», що ним насправді є інший кластер. Один кластер містить цистрони, пов’язані з імітацією виду A; інший — пов’язані з імітацією виду B. Кожен кластер настільки рідко розщеплюється кросинговером, що проміжного метелика ви в природі не побачите, хоча при розведенні великої кількості метеликів в лабораторії він трапляється доволі часто.
Я використовую слово «ген» в розумінні генетичної одиниці, що є достатньо малою для існування протягом великої кількості поколінь та широкого розповсюдження у формі багатьох копій. Це визначення не є застиглим і незмінним. Навпаки, воно доволі непевне, наче слова «великий» чи «старий». Чим більша вірогідність того, що хромосома буде розщеплена кросинговером або змінена певними мутаціями, тим менше вона має підстави називатися геном у тому сенсі, в якому я використовую цей термін. Вочевидь, на це заслуговує цистрон, але й більші одиниці також. Десяток цистронів можуть розташовуватись у хромосомі настільки близько один до одного, що нам вони видаються спільною тривкою генетичною одиницею. Хорошим прикладом є кластер, відповідальний за мімікрію в метеликів. Коли цистрони виходять з одного організму та потрапляють в інший, коли сідають на сперматозоїд чи яйцеклітину для подорожі в наступне покоління, тоді можуть виявити на своєму маленькому човнику своїх близьких сусідів із минулої мандрівки, старих товаришів, з якими вони колись здійснили довгу одіссею з організмів далеких предків. Сусідні цистрони у тій самій хромосомі утворюють щільно пов’язане між собою товариство попутників, що вкрай рідко не піднімуться разом на той самий корабель у час мейозу.
Для більшої точності цю книгу слід було б назвати навіть не «Егоїстичний цистрон» чи «Егоїстична хромосома», а «Дещо егоїстична велика ділянка хромосоми та значно егоїстичніша мала ділянка хромосоми». Але така назва не видається вдалою, тому, визначаючи ген як малу ділянку хромосоми, що здатна існувати протягом багатьох поколінь, я й назвав свою книгу «Егоїстичний ген».
Ось ми й опинилися там, де зупинилися у кінці 1-го розділу. Саме там ми пересвідчилися, що егоїзму слід очікувати від будь-якої істоти, що називається основною одиницею природного добору. Ми побачили, що одиницею природного добору вважають або вид, або популяцію чи певну групу всередині виду, або індивід. Я вже казав, що саме ген визнаю фундаментальною одиницею природного добору, а отже, й фундаментальною одиницею егоїзму. До того ж я сформулював таке визначення гена, щоби мати цілковиту рацію!
У своєму найбільш загальному розумінні природний добір означає диференційне виживання об’єктів. Одні з них живуть, а інші помирають. Для того, щоби ця вибіркова смерть не була марною, мають бути дотримані додаткові умови. Кожен об’єкт існує у формі багатьох копій, і принаймні деякі з цих об’єктів потенційно здатні вижити — як копії — протягом значного періоду еволюційного часу. Дрібні генетичні одиниці мають ці властивості, а індивіди, групи та види — ні. Великим досягненням Грегора Менделя була демонстрація того, що спадкові одиниці можна на практиці розглядати як неподільні та незалежні частинки. Сьогодні ми знаємо, що все виглядає не так просто. Навіть цистрон вряди-годи зазнає поділу, а будь-які два гени однієї хромосоми не є цілковито незалежними. Я вважаю ген одиницею, що значно наближається до ідеалу неподільної частинки. Ген не є неподільним, але ділиться рідко. Він або очевидно присутній, або очевидно відсутній в організмі якогось певного індивіда. Ген неушкодженим подорожує від діда до онука, проходячи крізь проміжні покоління без злиття з іншими генами. Якби гени безперервно поєднувалися між собою, природний добір таким, як він сьогодні є, був би неможливий. До речі, це було доведено ще за Дарвіна і змусило його вкрай непокоїтися, бо тоді вважали, що спадковість становить собою процес змішування. Мендель уже був надрукував своє відкриття, і воно могло б заспокоїти Дарвіна. Але, на жаль, Дарвін про нього не довідався. Виглядає так, що цю роботу прочитали вже через багато років після смерті обох учених. Мендель, можливо, сам не збагнув значення своїх відкриттів, інакше написав би про них Дарвіну.
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Егоїстичний ген» автора Докінз Клінтон Річард на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „3. Безсмертні спіралі“ на сторінці 2. Приємного читання.