Розділ «2. Реплікатори»

Егоїстичний ген

Спочатку була простота. Світ був простим, але навіть його виникнення пояснити доволі складно. Гадаю, що пояснити раптову появу такого складного явища, як життя, або ж істоти, здатної створювати життя, буде ще складніше. І тут нам якраз стане у пригоді еволюційна теорія Дарвіна з її природним добором, що здатна пояснити, яким чином простіше змінилося складнішим, невпорядковані атоми згуртувались у дедалі складніші структури, поки все це не завершилося створенням людини. Дарвін пропонує рішення (єдине правдоподібне з усіх наразі запропонованих) глибокої проблеми нашого існування. Я спробую пояснити цю велику теорію з більш загального погляду, ніж зазвичай, почавши з часу ще до початку еволюції як такої.

Дарвінівське «виживання найпристосованіших» насправді є особливим випадком більш загального закону виживання стабільного. Всесвіт населений стабільними об’єктами. Стабільний об’єкт — це набір атомів, належно постійний або поширений, щоби отримати свою назву. Це може бути унікальний набір атомів, наче гора Маттергорн в Альпах, що існує досить давно, щоби бути вартим найменування. Або це може бути певний клас істот, що наче краплі дощу, розпочинають своє існування в досить швидкому темпі, і заробили колективну назву, навіть якщо будь-хто з них живе недовго. Всі об’єкти, що ми бачимо навколо себе і що потребують пояснення (скелі, галактики, океанські хвилі), щонайменше є стабільними структурами атомів. Мильні бульбашки набувають форму сфери, бо вона є стабільною конфігурацією для тонких плівок, наповнених газом. На борту космічного корабля вода також весь час стабільна у вигляді сферичних кульок, але на землі, де діє гравітація, стабільна поверхня для стоячої води є пласкою та горизонтальною. Кристали солі набувають форми куба, бо це є сталим способом поєднання разом іонів натрію та хлору. На сонці найпростіші з усіх атомів — атоми водню — об’єднуються в атоми гелію, бо за умов, що там переважають, конфігурація гелію більш стабільна. Інші, ще складніші атоми формуються на зірках по всьому Всесвіті, починаючи з самого «великого вибуху», що, згідно з панівною теорією, призвів до його виникнення. Саме звідти й походять складові елементи нашого світу.

Іноді, коли атоми зустрічаються, відбувається хімічна реакція, в результаті якої вони об’єднуються в більш-менш стабільні молекули. Часом подібні молекули бувають дуже великими. Такий кристал, як діамант, можна вважати окремою молекулою, цілком сталою, але також дуже простою, бо її внутрішня атомна структура безкінечно повторюється. В сучасних живих організмах є й інші великі і дуже складні молекули, і їхня складність виявляється на кількох рівнях. Гемоглобін нашої крові є типовою молекулою білка. Вона побудована з ланцюжків менших молекул (амінокислот), кожна з яких містить кілька десятків атомів, організованих у чітку структуру. Загалом у молекулі гемоглобіну міститься 574 молекули амінокислот. Вони зібрані в чотири ланцюжки, що переплітаються між собою, утворюючи кулясту тривимірну структуру дивовижної складності. Модель молекули гемоглобіну схожа радше на густий колючий кущ. Але, на відміну від справжнього колючого куща, це не якесь випадкове утворення, а чітка й незмінна структура, де всі відгалуження та вигини мають своє місце, ідентично повторювана в організмі звичайної людини понад 6 × 1021 разів. Точна форма колючого куща молекули білка, наприклад, гемоглобіну, є сталою, бо два ланцюжки, що містять однакові послідовності амінокислот, наче дві гілочки, зазвичай урівноважуються в абсолютно однаковій тривимірній звивистій конструкції. Одні «кущі» гемоглобіну розростаються до своєї «бажаної» форми у вашому організмі зі швидкістю десь 4 × 1014 на секунду, а інші з такою самою швидкістю руйнуються.

Гемоглобін є сучасною молекулою, яку я використав для ілюстрації принципу, що атоми мають тенденцію до об’єднання у стабільні структури. Доречно наголосити, що навіть до появи життя на землі певна елементарна еволюція молекул могла відбуватися завядки звичайним процесам фізики та хімії. Тут не варто бачити якийсь задум, мету чи спрямування. Якщо якась група атомів в присутності джерела енергії об’єднується в сталу структуру, вона зазвичай залишається такою. Найдавнішою формою природного добору був добір сталих форм і відхилення несталих. У цьому немає нічого дивного. Це мало статися за визначенням.

Але не варто робити висновок, що існування таких складних об’єктів, яким є людина, можна пояснити суто такими самими принципами. Не можна узяти потрібну кількість атомів і збовтати їх разом з певною кількістю зовнішньої енергії, доки вони не об’єднаються у необхідну структуру, і з колби не постане Адам! У такий спосіб можна отримати молекулу з кількох десятків атомів, однак людина складається з понад 1 × 1027 атомів. Щоби спробувати створити людину, доведеться працювати над її біохімічним шейкером стільки, що весь вік Всесвіту здасться миттю, і навіть це не дасть успіху. Саме тут доречно згадати теорію Дарвіна в її найбільш загальному вигляді. Вона береться до справи там, де історія повільної побудови молекул безпорадна.

Опис походження життя, що я наводжу, є наперед спекулятивним, бо він не міг мати свідків. Сьогодні існує кілька суперечливих теорій, але вони мають певні спільні моменти. Сподіваюся, що мій спрощений опис не надто далеко відбіг від істини[6].

Ми не знаємо, якої хімічної сировини було на Землі вдосталь до появи життя, але цілком вірогідними варіантами є вода, двоокис вуглецю, метан та аміак: відомо, що всі ці прості сполуки присутні, принаймні, на деяких інших планетах нашої сонячної системи. Хіміки спробували відтворити хімічні умови молодої Землі. Вони брали ці прості речовини до колби та забезпечували джерело енергії — наприклад, ультрафіолетове світло або електричні розряди (штучну імітацію первісних блискавок). Після кількох тижнів за таких умов усередині колби зазвичай виявляли щось цікаве: рідкий брунатний бульйон із вмістом великої кількості молекул, складніших за попередні. Зокрема, там були виявлені амінокислоти — будівельні блоки білків, один із двох великих класів біологічних молекул. До проведення цих експериментів природні амінокислоти вважались ознакою наявності життя. Якби вони були виявлені, скажімо, на Марсі, життя на цій планеті було б доведене. Тепер їхнє існування має означати лише присутність кількох простих газів у атмосфері, діючих вулканів, сонячного світла або грозової погоди. Згодом відтворення в лабораторії хімічних умов Землі до появи життя створило органічні речовини під назвою пурини та піримідини. Це вже будівельні блоки молекули гена, самої ДНК.

Аналогічні процеси, мабуть, і створили «первісний бульйон», що, на думку біологів та хіміків, становив собою моря десь три-чотири мільярди років тому. Подекуди, у шумовинні, що висихало на березі, або у крихітних краплинках суспензії виникла локальна концентрація органічних речовин. Під подальшим впливом енергії ультрафіолетового світла сонця вони об’єднувались у більші молекули. Зараз великі органічні молекули не протрималися б достатньо довго, щоби стати помітними: вони були б стрімко поглинуті та зруйновані бактеріями або іншими живими істотами. Але бактерії виникли пізніше, а тоді великі органічні молекули могли спокійно дрейфувати собі у дедалі густішому бульйоні.

Якось була випадково сформована вельми цікава молекула. Ми називатимемо її реплікатором. Можливо, вона й не була найбільшою або найскладнішою молекулою з усіх, але мала видатну властивість — була здатна створювати копії самої себе. Ця подія може виглядати дуже малоймовірною. Такою вона насправді й була — майже нереальною. В масштабах життя людини такі малоймовірні речі можна вважати практично неможливими. Ось чому ви ніколи не виграєте великий приз у футбольній лотереї. Але в наших людських оцінках того, що можливе, а що ні, ми не мали справу з сотнями мільйонами років. Якби ви заповнювали лотерейні білети щотижня протягом сотень мільйонів років, то, швидше за все, зірвали вже декілька джекпотів.

Фактично молекулу, що копіює саму себе, уявити не так складно, як це виглядає на перший погляд, а виникнути їй достатньо лише раз. Подумки намалюйте реплікатор у вигляді форми для виливання металу або матриці. Уявіть, що це велика молекула, яка містить складний ланцюг різного роду молекул — будівельних блоків. Цих невеличких будівельних блоків було вдосталь у бульйоні навколо реплікатора. Тепер вважатимемо, що кожен будівельний блок має структурну спорідненість з іншими блоками свого типу. Тоді кожного разу, коли будівельний блок з бульйону опиняється поблизу частини реплікатора, з якою має спорідненість, він зазвичай приліплюється до неї. Будівельні блоки, що з’єднуються таким чином між собою, автоматично організуються в послідовність, що нагадує сам реплікатор. Завдяки цьому легко уявити, як вони з’єднуються у сталий ланцюг так само, як і при формуванні первинного реплікатора. Цей процес може тривати з накладанням одного шару на інший. Так само відбувається при формуванні кристалів. Однак два ланцюжки можуть розпастися, і тоді буде два реплікатора, кожен з яких продукуватиме свої копії.

Вірогідний також більш складний варіант, де кожен будівельний блок має спорідненість не з іншими блоками свого типу, а взаємну спорідненість з одним конкретним іншим типом. Тоді реплікатор діятиме як шаблон не для ідентичної копії, а для певного «негативу», що, зі свого боку, відтворюватиме точні копії первинного «позитиву». Для нашої мети нема значення, чи був первісний процес реплікації позитивно-негативним, чи позитивно-позитивним, хоча варто зазначити, що сучасні еквіваленти першого реплікатора, молекули ДНК, використовують позитивно-негативну реплікацію. Значення має лише те, що у світ зненацька прийшов новий різновид «сталості». Цілком імовірно, що раніше жодного конкретного різновиду складних молекул у бульйоні не було вдосталь, бо всі вони залежали від випадкового об’єднання будівельних блоків у певну конкретну сталу конфігурацію. Одразу ж після появи реплікатора він, мабуть, почав швидко поширювати свої копії по всіх морях, поки менші молекули, що виявилися будівельними блоками, не стали дефіцитом, а інші, більші молекули, виникали дедалі рідше.

Отже, на часі приступити до великої популяції ідентичних реплік. Але спершу треба згадати важливу властивість будь-якого процесу копіювання: він не є ідеальним. Трапляються помилки. Я сподіваюся, що у цій книзі немає друкарських помилок, але, якщо поглянути уважніше, ви, либонь, натрапите на декілька. Вони, може, не здатні спотворити значення речень через власну незначущість. Але уявіть собі час, коли не було друкарських верстатів, а книги, наприклад Євангеліє, копіювалися від руки. Всі писарі, якими б вони не були уважними, припускалися певних помилок, а деякі навіть наважувалися на незначні «покращення» на свій розсуд. Якщо вони робили копії з єдиного оригіналу, головний зміст не надто спотворювався. Але щойно копії почали робитися з копій, що також були зроблені з інших копій, кількість помилок загрозливо накопичилась. Зазвичай ми вважаємо помилки при копіюванні недоліком, а скопійований документ помилки аж ніяк не скрашують. Гадаю, що лише з Септуаґінтою (грецький переклад Старого Заповіту) трапилося так, що, неправильно переклавши єврейське слово, що означало «молода жінка» грецьким «діва» та отримавши пророцтво: «Ось Діва в утробі зачне і Сина народить…», учені започаткували щось значне[7]. Однак, як ми пересвідчимося далі, помилки під час копіювання в біологічних реплікаторах можуть таки призвести до суттєвого покращення, і для прогресивної еволюції життя деякі помилки виявилися дуже важливими. Ми не знаємо, як точно вихідні реплікаторні молекули робили свої копії. Їхні сучасні нащадки, молекули ДНК, є надзвичайно точними порівняно з найбільш високоякісним процесом людського копіювання, але навіть вони іноді роблять помилки, і, врешті-решт, саме ці помилки зробили еволюцію можливою. Вірогідно, вихідні реплікатори припускали значно більше помилок, але кожного разу ми можемо бути впевнені, що помилки траплялися, і ці помилки були кумулятивними.

Саме тоді, як робилися і накопичувались помилки копіювання, первісний бульйон наповнювався популяціями не ідентичних реплік, а кількох різновидів реплікантних молекул, що «походили» від одного й того самого предка. Чи були одні різновиди численнішими за інші? Майже напевно так. Деякі різновиди мали більшу спадкову стабільність, ніж інші. Певні молекули після свого формування мали меншу тенденцію до нового розпаду. Ці типи ставали в бульйоні порівняно численними не лише внаслідок їхньої «довговічності», але й тому, що мали багато часу для самокопіювання. Отже, реплікатори зі значною довговічністю ставали дедалі численнішими, і (за інших рівних умов) у популяції молекул мала виникнути «еволюційна тенденція» до більшої довговічності.

Але інші умови були не рівні, і ще однією властивістю реплікаторів, що, мабуть, мала ще більше значення для їхнього поширення в популяції, стала швидкість реплікації або «поширеність». Якщо реплікаторні молекули типу А копіюють себе, в середньому, раз на тиждень, а молекули типу B роблять це раз на годину, нескладно зрозуміти, що доволі скоро молекул А стане менше, хоч вони і «живуть» значно довше за молекули B. Мабуть, саме так діяла «еволюційна тенденція» до вищої «плодючості» молекул у бульйоні. Третьою характеристикою реплікаторних молекул, що мала позитивно проходити добір, була точність реплікації. Якщо молекули типу X та типу Y «живуть» однаковий час і реплікують з однаковою швидкістю, але X робить помилку, в середньому, у кожній десятій реплікації, а Y — лише в кожній сотій, саме їх стане більше. Контингент X у популяції втрачає не лише заблудлих «дітей», але й усіх їхніх нащадків, наявних або потенційних.

Якщо ви хоч щось знаєте про еволюцію, вам ця інформація видасться дещо парадоксальною. Чи можемо ми взаємно узгодити ідею про те, що помилки копіювання є важливою передумовою для виникнення еволюції, із твердженням, що природний добір надає перевагу високій точності копіювання? Відповідь виглядатиме так: хоча еволюція виглядає потрібною, надто якщо пам’ятати, що ми є її продуктом, насправді еволюціонувати ніхто й ніщо не «хоче». Еволюція відбувається несамохіть, попри всі зусилля реплікаторів (а зараз генів) запобігти цьому. Жак Моно вельми вдало розтлумачив це в своїй Спенсерівській лекції, в’їдливо зауваживши: «Ще один цікавий аспект теорії еволюції полягає в тому, що всі вважають себе її знавцями!»

Первісний бульйон почали заселяти стабільні різновиди молекул. Стабільні, бо певні молекули зберігалися тривалий час, мали велику швидкість або точність реплікації. Еволюційні тенденції щодо цих трьох видів стабільності відбувались таким чином: якби ви взяли проби бульйону двічі в різний час, то взята пізніше мала б вищу концентрацію різновидів зі значною довговічністю/плодючістю/точністю копіювання. Саме це біологи й називають еволюцією, коли говорять про живі істоти, і механізм тут той самий — природний добір.

Чи маємо ми називати первісні реплікаторні молекули «живими»? А яка різниця? Я можу сказати вам: «Найвидатнішою людиною, що колись жила, був Дарвін», а ви можете заперечити: «Ні, Ньютон», але я маю надію, що суперечку ми припинимо. Річ у тім, що хто б не переміг, на головний висновок це не впливатиме. Факти життя та досягнень Ньютона і Дарвіна залишаються абсолютно незмінними, називатимемо ми їх «видатними» чи ні. Мабуть, й історія реплікаторних молекул відбувалася десь так, як я розповідаю, незалежно від того, чи називатимемо ми їх «живими». Людські страждання виникають, бо надто багато хто не може зрозуміти: слова є лише інструментами, до яких ми вдаємося, й наявність у словнику такого слова, як «живі», зовсім не означає, що воно обов’язково має стосуватися чогось конкретного в реальному світі. Називатимемо ми ранні реплікатори живими чи ні, вони були прообразами життя — нашими прабатьками.

Наступною важливою ланкою в аргументі, на якій наголошував сам Дарвін (хоча він говорив про тварини і рослини, а не молекули), є конкуренція. Первісний бульйон не міг підтримувати нескінченну кількість реплікаторних молекул. Насамперед, розмір землі має свою межу, але й інші обмежуючі фактори теж, мабуть, важливі. В нашій уявній картині реплікатора як форми для виливання або матриці ми уявляли бульйон, густий від невеличких будівельних блоків — молекул, необхідних для виготовлення копій. Та коли реплікатори стали чисельними, будівельні блоки, мабуть, використовувались із такою швидкістю, що стали дефіцитними та коштовними ресурсами. Різні модифікації або різновиди реплікатора, певно, конкурували за них. Ми вже називали фактори, що могли збільшити кількість привілейованих видів реплікатора. Зараз ми бачимо, що менш привілейовані різновиди, чи не через конкуренцію, стали менш чисельними і, зрештою, чимало їхніх різновидів вимерли. Серед різновидів реплікатора відбувалася боротьба за існування. Хоча вони навіть не знали, що змагаються і не переймалися цим; боротьба велася без важких почуттів, ба, навіть, без жодних почуттів. Однак вони змагалися в тому сенсі, що будь-яке неправильне копіювання, результатом якого ставав новий вищий рівень стабільності або новий спосіб зменшення стабільності конкурентів, автоматично зберігався і множився. Цей процес покращення був кумулятивним. Способи збільшення власної стабільності та зменшення стабільності конкурентів ставали більш досконалими і ефективними. Деякі з них змогли навіть «відкрити» хімічний спосіб руйнування молекули конкурентів та використання вивільнених завдяки цьому будівельних блоків для виготовлення власних копій. Ці протохижаки одночасно отримували їжу та усували суперників. Інші реплікатори, мабуть, відкрили не лише хімічний, але й фізичний спосіб захисту, звівши навколо себе стіну з білка. Можливо, саме так і виникли перші живі клітини. Реплікатори вже не просто існували, але й будували для себе контейнери — носії для продовження свого існування. І виживали саме ті реплікатори, що змайстрували для себе машини для виживання. Перші такі машини, мабуть, складалися лише із захисної оболонки. Але з часом появи нових конкурентів, що мали кращі та ефективніші машини для виживання, підтримувати життя ставало все складніше. Тому ці машини для виживання ставали дедалі більшими і досконалішими, а сам процес був кумулятивним і прогресивним.

Чи є якась межа в поступовому покращенні технік та хитрощів, використовуваних реплікаторами для забезпечення самозбереження в цьому світі? Часу для удосконалення буде ще чимало. Які дивовижні двигуни самозбереження принесуть із собою наступні тисячоліття? Якою є доля давніх реплікаторів чотири тисячі мільйонів років потому? Вони не вимерли, бо є чудовими майстрами мистецтва виживання. Але не шукайте їх у морі, їх давно там немає. Тепер вони зібралися у величезні колонії, перебувають у безпеці всередині велетенських незграбних роботів[8], відділені від навколишнього світу, спілкуються з ним звивистими шляхами і мають дистанційний вплив. Вони є у вас та в мені, вони створили нас, наше тіло і розум, а їхнє збереження є основною метою нашого існування. Ці реплікатори пройшли тривалий шлях. Сьогодні вони називаються генами, і ми з вами є їхніми машинами для виживання.

Сторінки


В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Егоїстичний ген» автора Докінз Клінтон Річард на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „2. Реплікатори“ на сторінці 1. Приємного читання.

Запит на курсову/дипломну

Шукаєте де можна замовити написання дипломної/курсової роботи? Зробіть запит та ми оцінимо вартість і строки виконання роботи.

Введіть ваш номер телефону для зв'язку, в форматі 0505554433
Введіть тут тему своєї роботи