Розділ «5.3 Розвиток життя на землі»

Концепції сучасного природознавства

Білкові молекули й молекули нуклеїнових кислот — найскладніші з біологічних полімерів. їх синтез у клітині являє собою багатоступінчастий ферментативний процес, який відбувається зі споживанням енергії. Джерелом енергії є АТФ (або ГТФ у деяких реакціях синтезу білка). Навряд чи можна вважати ймовірною раптову появу в процесі хімічної еволюції одиничної молекули нуклеїнової кислоти або таку ж появу молекули білка. Тільки сполуки, які виникали у великих кількостях, могли стати основою для подальшого розвитку. Крім того, ці сполуки звичайно ж не були настільки складними, як сучасні білки й нуклеїнові кислоти. Поява великих органічних молекул — важлива подія в хімічній еволюції, що передувала появі життя на Землі, — була, очевидно, також багатоступінчастим процесом.

Аналіз цього етапу в експериментальному й виглядає набагато бідніше, хоч і тут є деякі моделі. Цей цикл експериментів пов'язаний з конденсацією або полімеризацією мономерів з метою одержання більш крупних молекул. Як відомо, ці реакції відбуваються з виділенням води, тобто супроводжуються дегідратацією. Так, наприклад, при поєднанні (конденсації) амінокислот у поліпептидний ланцюжок (первинна структура білкової молекули) за місцем утворення пептидного зв'язку (зв'язок між карбоксильною групою й аміногрупою) відбувається виділення молекули води. Коли утворюється нуклеїнова кислота, то відбувається аналогічний процес: фосфат з'єднується із цукрами, а цукри — з основою, при цьому виділяється молекула води. Оскільки для синтезу полімеру необхідно швидше видалити воду, то, імовірно, найлегше це зробити шляхом нагрівання суміші амінокислот. Такий же процес можливий і при утворенні нуклеїнової кислоти: суміш основи й цукрів нагрівається, що спричинює їх дегідратацію і приводить до утворення нуклеозиду. Подібним же чином, нагріваючи нуклеозид і фосфат, можна одержати нуклеотид.

Для первинної Землі така послідовність подій цілком імовірна. Першим, хто звернув на це увагу, був англійський фізик Дж. Бернал. На його думку, морські лагуни, що періодично пересихають, могли бути ідеальним місцем для утворення великих молекул. Вплив сонячного випромінювання на органічний матеріал, адсорбований на мулистому дні лагун, призводив до його дегідратації. Полімери, які виникали при цьому, змивалися потім водою в океан. Подібні реакції могли відбуватися вздовж усієї прибережної смуги.

Одна з найбільш вдалих моделей цього етапу належить С. Фоксу, який у результаті нагрівання суміші сухих амінокислот одержав поліпептиди різної довжини. Вони дістали назву "протеїноїдів", тобто попередників білків. Отримані поліпептиди можна було потім розчиняти у воді; при цьому вони залишалися стабільними. В одному з експериментів Фокс замість колби використав видовбаний шматок вулканічної лави. Вихід пептидів при цьому досягав 40 % від початкової кількості амінокислот. На переконання Фокса, центрами виникнення життя на цьому етапі були гарячі, сухі вулканічні райони, яких на той час на Землі було багато. Гарячі схили вулканів покривалися кіркою органічних речовин; дощ змивав пептиди, які утворювалися, в океан. Навряд чи первинний океан нагадував сучасний, якщо порівнювати глибини . Води на первинній Землі було, швидше за все, мало, такий океан могла б перебрести і курка. Саме незначна кількість води забезпечила високу концентрацію низькомолекулярних речовин у "первинному бульйоні" і зробила ймовірною їх взаємодію.

Якщо для утворення простих органічних речовин необхідні були досить могутні джерела енергії, то для утворення полімерів достатньо було простого нагрівання. Однак для реакції полімеризації необхідні каталізатори. У клітині цю роль виконують ферменти. Було висловлено припущення, що каталізаторами в процесі синтезу полімерів на первинній Землі могли бути поверхні мінеральних глин. Експериментально було доведено, що розчин амінокислоти аланіну у водному середовищі за присутності особливого виду глинозему й АТФ може давати полімерні ланцюжки поліаланіну.

Таким чином на давній Землі могли утворитися поліпептиди. Деякі з них були, можливо, каталітично активними. Однак це могло і не мати безпосереднього стосунку до виникнення життя, оскільки поліпептиди не мають здатності до самовідтворення, що є найбільш важливою ознакою живого. Ця властивість є, як відомо, у нуклеїнових кислот, які здатні до реплікації.

Були спроби синтезувати нуклеїнові кислоти неферментативним способом. Вихідною речовиною для цього були високоенергетичні фосфати. Завдяки цим сполукам вдалося одержати полінуклеотиди навіть при помірних температурах. Деякі реакції проводилися при температурі 150-160 °С, але полімеризація відбувалася навіть при температурі 65 °С.

Цікавими виявилися експерименти, коли в середовищі, що містить солі фосфорної кислоти (фосфати) і рибонуклеотиди у високих концентраціях, спонтанно синтезуються короткі полірибонуклеотиди. Також спонтанно, шляхом спарювання комплементарних основ, можуть утворитися РНК-копії. Обидві ці реакції протікають без участі ферментів чи інших білків. Звідси випливало, що РНК може виявляти власну каталітичну активність, що й підтвердив американський біохімік Т. Чек, який відкрив у 1982 р. каталітичні властивості РНК.

Поки що важко встановити, як могла виникнути ДНК. Ця органічна речовина пристосована краще, ніж РНК, до довгострокового зберігання інформації. В усякому разі відомо, що відсутність кисню в 2-положенні дезоксирибози робить молекулу ДНК більш стійкою, на відміну від РНК, до гідролітичного розщеплення в слаболужних водних розчинах, а саме такі розчини були в первинних водоймах і збереглися в сучасних клітинах. Крім того, наявність двох комплементарних ланцюгів ДНК забезпечує процес реплікації і полегшує виправлення помилок, які виникають у кожному із двох ланцюжків ДНК. Цілком можливо, що завдяки активності давнього білка, який є близьким до сучасного фермента — зворотної транскриптази (тобто здатний синтезувати ДНК, використовуючи як матрицю РНК), і утворилися перші молекули ДНК на Землі.

Незрозумілим залишається також питання про те, як найдавніша РНК почала кодувати амінокислотну послідовність. Але коли це відбулося, то утворилися системи зі зворотним зв'язком, у яких нуклеїнові кислоти містили інформацію про структуру білків, що сприяло збільшенню кількості кодуючих їх нуклеїнових кислот. Крім того, білки могли захищати нуклеїнові кислоти від руйнівної дії ультрафіолету.

Обговорюється в літературі і питання про те, що ж з'явилося на Землі раніше: поліпептидна послідовність чи полінуклеотидна, тобто що було первинним — білок чи нуклеїнова кислота?

Генетичну гіпотезу, або гіпотезу "голого гена", запропонували ще в 1929 р. Дж. Холдейн і Г. Мюллер. Відповідно до цієї гіпотези, яку підтримали згодом й інші автори, спочатку виникли нуклеїнові кислоти як матрична основа для синтезу більш пізніх за часом утворення білків. Доказом на користь цього факту можна вважати відкриття каталітичної властивості РНК.

З наведених даних зрозуміло, що в цій гіпотезі, коли йшлося про процеси абіогенезу, данина віддавалася пріоритету такої властивості живого, як здатності до самовідтворення. О. І. Опарін, який першим запропонував гіпотезу абіогенезу (1924 p.), спочатку припускав, що первинним є білок, оскільки без ферментів (тобто білків) неможливий обмін речовин, а без останнього неможливі ніякі прояви життя. Цілком очевидно, що в цій гіпотезі віддається данина пріоритету в процесах абіогенезу такій важливій властивості живого, як обмін речовин.

Однак після того, як з'явилися відомості про будову й роль нуклеїнових кислот у проявах життя, О. І. Опарін дещо змінив свої погляди і в останній своїй монографії "Матерія - життя - інтелект" (1977 р.) висловив чудову думку про те, що поліпептиди й полінуклеотиди ще на зорі життя на Землі еволюціонували разом шляхом взаємодії, спочатку далеко ще не зовсім досконалої, тобто відбувалася спільна еволюція, або коеволюція.

Таким чином, об'єднання здатності до самовідтворення полінуклеотидів з каталітичною активністю поліпептидів слід вважати однією з найбільш важливих сходинок хімічної еволюції. Для виникнення життя необхідною була участь як полінуклеотидів, так і поліпептидів. Найбільші шанси на збереження в ході передбіологічного добору мали ті системи, у яких здатність до обміну речовин поєднувалася зі здатністю до самовідтворення.

У подальшому ускладненні обміну речовин у таких системах істотну роль повинні були відігравати каталізатори й просторово-часове роз'єднання початкових і кінцевих продуктів реакції. Останнє не могло виникнути без фазово-контрастного поділу, тобто без виникнення мембрани й утворення, яке передувало клітині, — у цьому й полягає основна сутність наступного етапу еволюції, про який ми також можемо розмірковувати лише гіпотетично.

Третій етап — виникнення пробіонтів і біологічних мембран. Питання про те, як відбувався перехід від біополімерів до перших живих істот, є найскладнішим моментом у проблемі виникнення життя. Найбільш відомий підхід до вирішення цього питання міститься в експериментах О. І. Опаріна, який запропонував коацерватну гіпотезу (1924 p.).

О. І. Опарін припустив, що перехід від хімічної еволюції до біологічної пов'язаний з виникненням найпростіших фазово-відособлених органічних систем — пробіонтів, здатних використовувати речовину й енергію з навколишнього середовища і завдяки цьому здійснювати найважливішу життєву функцію — функцію росту.

Особливе значення в еволюції пробіонтів мало формування каталітичних систем. Першими каталізаторами були неорганічні сполуки, такі як солі заліза, міді й інших важких металів. Однак їх дія була досить слабкою. Поступово на основі передбіологічного добору виникли біологічні каталізатори, що мало велике значення для удосконалення обміну речовин.

Справжній початок біологічної еволюції ознаменувало виникнення пробіонтів з кодовими взаємозв'язками між білками і нуклеїновими кислотами. Взаємодія білків і нуклеїнових кислот зумовила виникнення таких властивостей живого, як здатність до самовідтворення, до збереження спадкової інформації і передавання її наступним поколінням. Пробіонти, у яких обмін речовин поєднувався зі здатністю до самовідтворення, мали найкращу перспективу зберегтися в передбіологічному доборі.

Сторінки


В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Концепції сучасного природознавства» автора Автор невідомий на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „5.3 Розвиток життя на землі“ на сторінці 3. Приємного читання.

Зміст

  • Передмова

  • Розділ 1. ПРИРОДОЗНАВСТВО, НАУКА, НАУКОВИЙ МЕТОД, ПІЗНАННЯ І ЙОГО СТРУКТУРА

  • 1.3 Загальнонаукові методи теоретичного пізнання

  • 1.4 Загальнонаукові методи, що застосовуються на емпіричному й теоретичному рівнях пізнання

  • Розділ 2. ЗАРОДЖЕННЯ, СТАНОВЛЕННЯ Й І РОЗВИТОК ПРИРОДОЗНАВСТВА

  • 2.1.2 Міфологія

  • 2.2 Становлення цивілізації

  • 2.2.3 Металургія

  • 2.2.4 Розвиток гірничої справи та видобування корисних копалин

  • 2.2.5 Розвиток домашніх промислів і становлення ремесла

  • 2.2.6 Еволюція суспільної свідомості. Раціональні знання

  • 2.2.7 Виникнення та становлення обміну

  • 2.2.8 Поділ праці

  • 2.2.9 Розвиток духовної культури

  • 2.2.10 Становлення писемності

  • 2.3 Географія та основні характеристики цивілізацій стародавнього сходу

  • 2.4 Давні цивілізації Європи

  • 2.5 Філософія і наука античного світу

  • 2.6 Наука середніх віків

  • 2.7 Природознавство в епоху Відродження

  • 2.7.4 Геометрична статика

  • 2.7.5 Кінематика

  • 2.7.6 Джордано Бруно: світоглядні висновки з коперниканізму

  • 2.7.7 Відкриття законів руху планет

  • 2.8 Виникнення класичної механіки

  • 2.8.3 Ньютонівська революція

  • 2.9 Від геометричного методу до аналітичної механіки

  • 2.10 Виникнення й розвиток електродинаміки

  • 2.10.4 Теорія електромагнітного поля Максвелла

  • 2.11 Основні досягнення природознавства XIX століття

  • Розділ З. СУЧАСНА ФІЗИЧНА КАРТИНА СВІТУ

  • 3.2 Теорія відносності

  • 3.3 Закон збереження енергії в макроскопічних процесах

  • 3.4 Другий закон термодинаміки та принцип зростання ентропії

  • 3.5 Квантова механіка

  • 3.6 Світ елементарних частинок

  • 3.6.2 Класифікація елементарних частинок

  • 3.6.3 Теорії елементарних частинок

  • 3.7 Проблеми енергетики (ядерні і термоядерні реактори)

  • Розділ 4. СУЧАСНА АСТРОФІЗИКА ТА КОСМОЛОГІЯ

  • 4.2 Галактика і квазари

  • 4.3 Народження та еволюція зірок

  • 4.4 Сонячна система

  • Розділ 5. СУЧАСНА БІОЛОГІЧНА КАРТИНА СВІТУ

  • 5.2 Теорія еволюції

  • 5.3 Розвиток життя на землі
  • 5.4 Походження людини

  • Розділ 6. УЧЕННЯ ПРО БІОСФЕРУ ТА НООСФЕРУ

  • 6.1.2 Утворення планетної системи

  • 6.1.3 Основні характеристики Землі

  • 6.1.4 Основні вимоги до умов, що забезпечують виникнення та розвиток життя

  • 6.1.5 Основні етапи хімічної еволюції, що передували абіогенезу

  • 6.1.6 Абіогенез

  • 6.1.7 Основні етапи еволюції живої природи

  • 6.1.8 Основні характеристики біосфери

  • 6.1.9 Виникнення атмосфери та гідросфери

  • 6.1.10 Основні характеристики атмосфери

  • 6.2 Ноосфера

  • 6.2.3 Перехід біосфери в ноосферу

  • 6.2.4 Умови, необхідні для становлення та існування ноосфери

  • 6.2.5 Наука як основний чинник ноосфери

  • 6.2.6 Проблеми становлення ноосфери

  • Рекомендовані теми рефератів

  • Список використаної літератури

  • Запит на курсову/дипломну

    Шукаєте де можна замовити написання дипломної/курсової роботи? Зробіть запит та ми оцінимо вартість і строки виконання роботи.

    Введіть ваш номер телефону для зв'язку, в форматі 0505554433
    Введіть тут тему своєї роботи