Розділ «4.3 Народження та еволюція зірок»

Концепції сучасного природознавства

У результаті численних і копітких обчислень, що проводилися з початку 1960-х років, удалося вибудувати життєвий шлях зірки типу Сонця як рух точки, що зображує цю зірку, по діаграмі Герцшпрунга — Рассела. Первісне стиснення протозірки призводить до швидкого падіння світності в міру зменшення її розмірів. Це супроводжується збільшенням поверхневої температури внаслідок розігрівання атмосфери зірки. Коли в центрі зірки починається "спалювання" водню, точка, що зображує зірку, зупиняється на головній послідовності й залишається там протягом близько 10 мільярдів років. Перехід в область червоних гігантів відбувається також дуже швидко. Коли ж включається "спалювання" гелію, точка залишається у верхньому правому куті діаграми на кілька сотень мільйонів років. Потім зірка стає нестійкою, точка знову рухається по діаграмі й, нарешті, усе закінчується на білому карлику. Білі карлики — це померлі зірки. Вони слабо світять й остигають. Точка на діаграмі, яка зображує білий карлик, повільно сповзає по кривій вниз і вправо.

Слід звернути особливу увагу на кілька важливих чинників зоряної еволюції. По-перше, наймасивніші зірки головної послідовності — це разом із тим і найяскравіші зірки. Вони яскраві тому, що водень у них "спалюється" в шаленому темпі. Незважаючи на велику масу й, відповідно, величезні запаси пального, водень у серцевині таких зірок виснажується дуже швидко. Інакше кажучи, наймасивніші зірки й еволюціонують швидше від усіх інших зірок. По-друге, дослідження планетарних туманностей і залишків наднових свідчить, що наймасивніші зірки можуть викидати в космос частину своєї речовини. І, нарешті, астрофізики твердо впевнені в існуванні чіткої верхньої межі маси білого карлика. Білий карлик повинен мати масу, меншу ніж 1,25 маси Сонця. Якщо ж маса зірки більша, то наприкінці еволюції вона може стати нейтронною зорею або чорною діркою.


4.3.3 Білі карлики


Природа білих карликів як "мертвих зірок" стала достатньо зрозумілою після опублікування роботи Чандрасекара на початку 1930-х років. Та термоядерна "пічка", що підтримує структуру звичайних зірок, не може забезпечити стійкість зовнішніх шарів білого карлика з тієї причини, що в них уже вичерпане все пальне. Для розуміння того механізму, що підтримує структуру білого карлика, розглянемо речовину в серцевині зірки, яка перебуває у стані колапсу. З часом зірка зазнає все більшого стиснення, тиск і густина стають настільки великими, що всі атоми повністю "роздавлюються". У результаті з'являється безліч вільних електронів, в яких "плавають ядра". Кожному електрону властивий спін, унаслідок чого його поведінка підпорядковується важливому закону природи під назвою принципу заборони Паулі. Відповідно до цієї заборони два електрони одночасно не можуть займати одне і те ж місце, якщо їхні швидкості й спіни однакові. Коли умираюча зірка стискається, то електрони також зазнають такого сильного стиснення, що, зрештою, заповнюються всі вакансії можливого розташуванняй швидкостей електронів. Як тільки це відбулося, електрони починають з великою силою впливати один на одного, протидіючи подальшому стисненню умираючої зірки. Таким чином, виникає тиск вироджених електронів, який запобігає необмеженому стисненню (колапсу) білого карлика.

Білі карлики відомі астрономам уже протягом багатьох років. Вони настільки звичні, щодо недавніх пір вважалися кінцевим станом усіх умираючих зірок.

Виконавши детальні розрахунки структури білих карликів, Чандрасекар зробив цікаве відкриття: для маси як найважливішої фізичної характеристики білих карликів існує строга верхня межа. Тиск вироджених електронів здатний підтримувати речовину мертвої зірки лише в тому випадку, якщо її маса не перевищує 1,25 маси Сонця. Якщо ж маса вмираючої зірки істотно перевищує 1,25 сонячної, то навіть могутніх сил взаємодії між виродженими електронами недостатньо для того, щоб протистояти нищівному тиску верхніх шарів зірки. Ця критична межа маси — 1,25 маси Сонця — називається межею Чандрасекара.


4.3.4 Пульсари та нейтронні зірки



4.3.5 Чорні дірки


Ще в 1795 році великий французький математик П'єр Сімон Лаплас дійшов висновку, що світло не може залишити тіло, якщо останнє достатньо масивне або дуже сильно стиснуте. До середини 60-х років XX століття астрофізикам вдалося з'ясувати структуру зірок і хід їх еволюції. З'ясувалося, що чорні дірки — це один із трьох можливих варіантів кінцевої стадії еволюції зірок. Це те, що залишається після катастрофічного гравітаційного колапсу масивної зірки, коли вона вмирає. У разі колапсу напруженість сили тяжіння над її поверхнею стає настільки великою, що простір-час навколо зірки згортається, і зірка зникає зі Всесвіту, залишаючи по собі тільки надзвичайно викривлений осередок простору-часу.

На значній відстані від чорної дірки простір-час майже плоский і світлові промені поширюються прямолінійно. Твердження, що чорні дірки є загрозою для нас, зовсім не обґрунтовані. Чорні дірки не можуть переміщуватися у Всесвіті і то там, то деінше поглинати планети, зірки й галактики. Усього за кілька тисяч кілометрів від чорних дірок, які мають масу, що дорівнює приблизно 10-20 сонячних мас, простір-час практично плоский і релятивістські ефекти незначні.

Чим ближче до чорної дірки проходять промені світла, тим на більший кут вони відхиляються. Можна навіть спрямувати промінь світла в напрямку чорної дірки таким чином, що це світло потрапить на колову орбіту навколо дірки й поглинеться. Ця сфера називається фотонною сферою, або фотонною окружністю. Нарешті, ті промені світла, які націлені прямо на чорну дірку, "усмоктуються" в неї. Ці промені назавжди залишають зовнішній світ. Така поведінка властива найпростішому з можливих типів чорних дірок. У 1916 році німецький астроном Карл Шварцшильд запропонував точний розв'язок рівнянь гравітаційного поля Ейнштейна. Цей розв'язок Шварцшильда описує сферично симетричну чорну дірку, яка має тільки масу. Умираюча зірка, породженням якої є чорна дірка, не обертається і не повинна мати ні електричного заряду, ні магнітного поля.

Зрозуміти природу шварцшильдівської чорної дірки можна, розглянувши вмираючу масивну зірку (але таку, яка не обертається і не має заряду) в процесі гравітаційного колапсу. Уявімо, що хтось стоїть на поверхні такої умираючої зірки, у якої тільки-но вичерпалося ядерне паливо. Безпосередньо перед початком колапсу наш спостерігач бере могутній прожектор і спрямовує його промені в різні боки. Так як речовина зірки до цього часу була розподілена в досить великому об'ємі, гравітаційне поле біля поверхні зірки залишається досить слабким. Тому промінь прожектора поширюється прямолінійно або майже прямолінійно. Однак після того, як розпочався процес колапсу, речовина зірки стискається всередині все меншого й меншого об'єму. Із зменшенням розмірів зірки тяжіння на її поверхні зростає все більше й більше. Збільшення кривизни простору-часу призводить до відхилення світлового променя від попереднього прямолінійного поширення. Спочатку промені, які випромінює прожектор під малим кутом до горизонту, відхиляються вниз до поверхні. Але пізніше, у зв'язку з розвитком колапсу, нашому досліднику доводиться спрямовувати промені все ближче до вертикалі, щоб вони могли назавжди піти від зірки. Зрештою, на певній критичній стадії колапсу дослідник виявить, що вже жоден промінь не може залишити зірку. Як би наш дослідник не спрямовував свій прожектор, його промінь усе одно змінює свій напрямок так, що знову потрапляє вниз, на зірку. Тоді кажуть, що зірка минула свій горизонт подій. Ніщо із того, що опинилося за горизонтом подій. не може потрапити назовні, навіть світло. Наш дослідник буквально зникає із зовнішнього Всесвіту.

Термін "горизонт подій" — дуже вдала назва для тієї поверхні в просторі-часі, з якої ніщо не може вивільнитися. Це справді "горизонт", за яким усі події зникають для нас. Іноді горизонт подій, який оточує чорну дірку, називають її поверхнею.

Знаючи розв'язок Шварцшильда, можна розрахувати положення горизонту подій, що оточує чорну дірку. Наприклад, поперечник сфери горизонту подій чорної дірки, яка має масу 10 сонячних мас, становить близько 60 км. Як тільки вмираюча зірка стиснеться до поперечника 60 км, простір-час зазнає настільки сильного викривлення, що навколо зірки виникає горизонт подій. У результаті зірка зникає.

На момент, коли вмираюча зірка піде за свій горизонт подій, її розміри ще досить великі, але ніякі фізичні сили вже не можуть зупинити її подальше стиснення. І зірка в цілому продовжує стискатися, поки, нарешті, не припинить своє існування в точці, що відповідає центру чорної дірки. У цій точці нескінченний тиск, нескінченна густина й нескінченна кривизна простору-часу. Це "місце" в просторі-часі називається сингулярністю.

Одночасно зі швидким ослабленням яскравості вмираючої зірки "вступає в гру" й інший важливий ефект. Справа в тому, що тяжіння викликає уповільнення перебігу часу. Цей ефект називається гравітаційним червоним зміщенням, тому що світло, яке випромінюють атоми, занурені в гравітаційне поле, "зміщується" в бік більш довгих хвиль. Тому для астронома, який спостерігає збоку, зірка в стані колапсу стає одночасно і слабкою, і такою, що все більше світла випромінює в діапазоні довгих ("червоних") хвиль.

Уповільнення ходу часу, яке майже неможливо помітити в слабкому гравітаційному полі Землі, стає в процесі утворення чорної дірки чинником фундаментальної важливості. Адже на самому горизонті подій час повністю зупиняється. Пояснюючи цей факт, потрібно бути дуже обережним. Проілюструємо ситуацію. Уявімо, що ми кинули камінь в чорну дірку. Припустимо, ми випустили цей камінь з рук, знаходячись дуже далеко від чорної дірки, де простір-час майже плоский. Спостерігаючи рух каменя, ми побачимо, що з наближенням до чорної дірки він падає все швидше й швидше. Якби ньютонівська теорія була правильною, то наш камінь продовжував би збільшувати швидкість, і в момент урізання в сингулярність він рухався б практично з нескінченною швидкістю. Але в настільки сильних гравітаційних полях ньютонівська теорія не може дати правильну відповідь. Виявляється, що коли камінь наближається до горизонту подій, починається стрімке уповільнення часу. Ми, на свій подив, виявимо, що камінь починає падати все повільніше й зовсім зупиняється на горизонті подій, тому що на цьому горизонті для зовнішнього спостерігача перестає рухатися час.

Отже, ми ніколи не побачимо цієї події — як камінь перетинає горизонт подій. Однак той, хто падає разом з каменем, буде спостерігати зовсім іншу картину. Спостерігач у стані вільного падіння не зможе помітити уповільнення часу. Пояснити цю дивну ситуацію можна таким чином: все, що бачить спостерігач у стані вільного падіння, сповільнюється в тій же пропорції, включаючи навіть його пульс і темп старіння.

Годинник спостерігача, який перебуває в стані вільного падіння, відраховує час у своєму звичайному темпі. Тому спостерігач дуже швидко (за своїм годинником) проскакує горизонт подій. Однак відразу після проходження горизонту він виявляє, що не все гаразд. Подібно до того, як на горизонті подій зупинився час для зовнішнього спостерігача, усередині горизонту час міняється ролями з простором. У нас на Землі людина здатна переміщуватися в трьох просторових вимірах. Однак у часовому вимірі ми неспроможні "ходити" туди й назад. Ми невпинно йдемо у часі тільки вперед від народження до смерті — хочемо ми цього чи не хочемо. '

Усередині ж горизонту подій простір і час міняються ролями. Невдаху-космонавта. який потрапив під горизонт подій, починає невпинно затягувати в простір назустріч сингулярності.

Сторінки


В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Концепції сучасного природознавства» автора Автор невідомий на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „4.3 Народження та еволюція зірок“ на сторінці 2. Приємного читання.

Зміст

  • Передмова

  • Розділ 1. ПРИРОДОЗНАВСТВО, НАУКА, НАУКОВИЙ МЕТОД, ПІЗНАННЯ І ЙОГО СТРУКТУРА

  • 1.3 Загальнонаукові методи теоретичного пізнання

  • 1.4 Загальнонаукові методи, що застосовуються на емпіричному й теоретичному рівнях пізнання

  • Розділ 2. ЗАРОДЖЕННЯ, СТАНОВЛЕННЯ Й І РОЗВИТОК ПРИРОДОЗНАВСТВА

  • 2.1.2 Міфологія

  • 2.2 Становлення цивілізації

  • 2.2.3 Металургія

  • 2.2.4 Розвиток гірничої справи та видобування корисних копалин

  • 2.2.5 Розвиток домашніх промислів і становлення ремесла

  • 2.2.6 Еволюція суспільної свідомості. Раціональні знання

  • 2.2.7 Виникнення та становлення обміну

  • 2.2.8 Поділ праці

  • 2.2.9 Розвиток духовної культури

  • 2.2.10 Становлення писемності

  • 2.3 Географія та основні характеристики цивілізацій стародавнього сходу

  • 2.4 Давні цивілізації Європи

  • 2.5 Філософія і наука античного світу

  • 2.6 Наука середніх віків

  • 2.7 Природознавство в епоху Відродження

  • 2.7.4 Геометрична статика

  • 2.7.5 Кінематика

  • 2.7.6 Джордано Бруно: світоглядні висновки з коперниканізму

  • 2.7.7 Відкриття законів руху планет

  • 2.8 Виникнення класичної механіки

  • 2.8.3 Ньютонівська революція

  • 2.9 Від геометричного методу до аналітичної механіки

  • 2.10 Виникнення й розвиток електродинаміки

  • 2.10.4 Теорія електромагнітного поля Максвелла

  • 2.11 Основні досягнення природознавства XIX століття

  • Розділ З. СУЧАСНА ФІЗИЧНА КАРТИНА СВІТУ

  • 3.2 Теорія відносності

  • 3.3 Закон збереження енергії в макроскопічних процесах

  • 3.4 Другий закон термодинаміки та принцип зростання ентропії

  • 3.5 Квантова механіка

  • 3.6 Світ елементарних частинок

  • 3.6.2 Класифікація елементарних частинок

  • 3.6.3 Теорії елементарних частинок

  • 3.7 Проблеми енергетики (ядерні і термоядерні реактори)

  • Розділ 4. СУЧАСНА АСТРОФІЗИКА ТА КОСМОЛОГІЯ

  • 4.2 Галактика і квазари

  • 4.3 Народження та еволюція зірок
  • 4.4 Сонячна система

  • Розділ 5. СУЧАСНА БІОЛОГІЧНА КАРТИНА СВІТУ

  • 5.2 Теорія еволюції

  • 5.3 Розвиток життя на землі

  • 5.4 Походження людини

  • Розділ 6. УЧЕННЯ ПРО БІОСФЕРУ ТА НООСФЕРУ

  • 6.1.2 Утворення планетної системи

  • 6.1.3 Основні характеристики Землі

  • 6.1.4 Основні вимоги до умов, що забезпечують виникнення та розвиток життя

  • 6.1.5 Основні етапи хімічної еволюції, що передували абіогенезу

  • 6.1.6 Абіогенез

  • 6.1.7 Основні етапи еволюції живої природи

  • 6.1.8 Основні характеристики біосфери

  • 6.1.9 Виникнення атмосфери та гідросфери

  • 6.1.10 Основні характеристики атмосфери

  • 6.2 Ноосфера

  • 6.2.3 Перехід біосфери в ноосферу

  • 6.2.4 Умови, необхідні для становлення та існування ноосфери

  • 6.2.5 Наука як основний чинник ноосфери

  • 6.2.6 Проблеми становлення ноосфери

  • Рекомендовані теми рефератів

  • Список використаної літератури

  • Запит на курсову/дипломну

    Шукаєте де можна замовити написання дипломної/курсової роботи? Зробіть запит та ми оцінимо вартість і строки виконання роботи.

    Введіть ваш номер телефону для зв'язку, в форматі 0505554433
    Введіть тут тему своєї роботи