Розділ «3.7 Проблеми енергетики (ядерні і термоядерні реактори)»

Концепції сучасного природознавства

Сказаного досить, щоб оцінити всю серйозність ситуації. Розглянемо тепер становище з енергетичним балансом. Доцільно поділити джерела енергії на дві групи: відтворювані джерела та "основний капітал". До першої групи належать енергія вітру, рік і морських припливів, сільськогосподарського й деревного палива, геотермія (внутрішнє тепло Землі), сонячна енергія. До другої групи належать джерела енергії, які утворилися в земній корі в результаті геологічної еволюції: вугілля, нафта, горючі гази і, зрозуміло, ядерне пальне. У наш час у загальному балансі енергоспоживання перше місце належить вугіллю, нафті й горючим газам. Людство витрачає поки що основний капітал. В історичному аспекті відбувалося витіснення дров і сільськогосподарського палива вугіллям і нафтою.

Для подальших кількісних оцінок зручно ввести одиницю енергії:

Енергії 1 Q достатньо, щоб нагріти до кипіння два з половиною Ладозьких озера. Історія матеріальної культури й демографічні оцінки показують, що за період від початку нашої ери до 1850 року людство витратило 6 + 9 Q енергії. Споживання за наступні сто років становило близько 4 Q. У 1970 році світове споживання було на рівні 0,2 Q, а в 2000 році воно становило 1 Q Якщо наявні темпи зростання енергоспоживання збережуться, то до 2050 року воно досягне 10 Q. Таким чином, через 50 років людство повинно буде щорічно витрачати стільки ж енергії, скільки воно витратило з часів імперії Августа до наших днів.

Природно, виникає питання, якою мірою це зростання забезпечене наявними ресурсами. Перш ніж розглядати оцінку запасів, наведену нижче, корисно звернутися до одного цікавого міркування. Припустимо, що людство дійсно почне витрачати запаси потенційної енергії (у кінцевому підсумку перетворюючи її на тепло) на рівні, що становить помітну частку від загальної енергії, яку Земля одержує від Сонця. У такому випадку ми повинні бути готові до того, що відбудеться зміна клімату нашої планети. Точніше: уся сонячна енергія, яка досягає поверхні Землі, становит близько 2500 Q на рік. Збільшення енерговиділення, скажімо, до 20-30 Q на рік, якщо воно буде забезпечуватися спалюванням вугілля, нафти й газу, а отже, супроводжуватиметься підвищенням вмісту вуглекислого газу в атмосфері, призведе до відчутних змін клімату Землі ("парниковий ефект"). У результаті почнеться танення материкових льодів Антарктиди й Гренландії, що у свою чергу викличе підвищення рівня Світового океану. Виникне потреба в складних гідротехнічних роботах, щоб захистити від затоплення величезні низинні території на узбережжях океану. Досить несподіваний результаті Правда, якщо енергетика світу повністю перейде на ядерне пальне, то вміст С02 залишиться на колишньому рівні й катастрофічні зміни клімату почнуться за умови більш високих темпів додаткового енерговиділення. Проте, обговорюючи перспективи розвитку енергетики планети, не варто вдаватися до занадто далеких і сміливих екстраполяцій. У межах допустимого припущення ми можемо розглядати як гранично можливу цифру додаткового енерговиділення рівень, що становить ЗО Q на рік

Відтворювані джерела енергії відповідають у сукупності (крім сонячної'енергії) не більш як 2-3 Q на рік. Однак експлуатація їх значною мірою економічно зовсім безперспективна і вони, зрозуміло, не зможуть задовольнити зростаючі потреби світу. Отже, використання мінеральної сировини триватиме.

Сумарні запаси вугілля, навіть за оптимістичними оцінками, не перевищують 150(2, нафти й газу 10 Q. При цьому, у міру витрати наявних ресурсів, видобуток копалин буде пов'язаний із зростанням технічних труднощів і буде супроводжуватися збільшенням їх вартості. У підсумку, за оцінками експертів, запаси нафти (навіть враховуючи ще не відкриті родовища) будуть вичерпані протягом 30—40 років, а вугілля — протягом 100—200 років.

Однак і ця досить похмура перспектива не дає повного уявлення про серйозність сучасного становища. Справа в тому, що ми увесь час використовували глобальні оцінки, які внаслідок усереднення створювали ілюзію відносного благополуччя, принаймні, стосовно найближчого майбутнього. Тим часом мінеральна сировина розподілена вкрай нерівномірно по країнах світу. Досить нагадати, що, наприклад, Західна Єврот на 2/3 залежить від імпорту енергетичної сировини.

Нам залишається розглянути питання про використання сонячного тепла та ядерного пального. На жаль, сонячна енергія має незначну щільність. Енергетична освітленість на поверхні Землі за умови нормального падіння сонячних променів і прозорої атмосфери становить близько 1 кВт/м2. До того ж коефіцієнт корисної дії фото- і термоелектричних перетворювачів невеликий. Тому для забезпечення потреб людства через сто років довелося б значну частину поверхні Землі (близько 10 %!) закрити сонячними генераторами. Фантастичність подібного проекту очевидна.

Існують два діаметрально протилежні ядерні процеси, що протікають з виділенням енергії: процеси розподілу й синтезу. Коли важке ядро, захоплюючи нейтрон, ділиться, то при цьому воно розпадається на дві (або більше) частини, які, як правило, мають неоднакові маси. У результаті виділяється енергія й одночасно вивільняється кілька нейтронів. Ці нейтрони знову можна використовувати для поділу інших важких ядер. Коли відбувається синтез, то два легких ядра, якщо вони мають достатню енергію, поєднуються, і утворюють легкі продукти реакції, які можуть мати значно більшу кінетичну енергію, ніж вихідні компоненти. Енергія в обох випадках має ядерне походження. Ядра, що мають середню масу, не можна використовувати ні для реакцій поділу, ні для синтезу.

Крім того, що кілька століть є короткотривалим історичним періодом, використання матеріалів, що поділяються, створює серйозну проблему, пов'язану з радіоактивними відходами. У разі переходу енергетики на ядерне пальне кількість довго живучих радіоактивних відходів з ядерних реакторів стане загрозливо великою, і виникне складна й матеріально затратна проблема їх захоронення. Використання для цього морського дна загрожує отруєнням океанської фауни, не забезпечує необхідної безпеки й повинно бути відкинуто. Залишається викидання радіоактивних продуктів у далекий космос.

Таким чином, вимальовується неприємна альтернатива: жалюгідний енергетичний пайок або дуже повільне, однак постійно прогресуюче радіоактивне забруднення планети, боротися з яким надзвичайно важко.

Саме із цих позицій ми й повинні підходити до перспективи використання керованого синтезу легких ядер як основи енергетики майбутнього суспільства.

Практичний інтерес являють для нас дві реакції синтезу.

Дейтерій, який з усіх природних ядер є найбільш придатним для термо-ядерних реакцій, є в морській воді — його вміст становить 0,0153 %. Цієї кількості дейтерію достатньо для виробництва 30 Q енергії щорічно протягом 109 років.

Є підстави вважати, що вартість неядерного пального й пального, яке використовується в реакціях поділу, буде з часом зростати, у той час як вартість дейтерію (яка і зараз низька) буде знижуватися.

У процесі синтезу не утворюються шкідливі або довгоіснуючі радіоактивні речовини. Прийнято вважати, що відношення радіоактивної небезпеки для реакторів поділу і реакторів синтезу виражається як 1000:1.

Відповідь на питання про те, навіщо потрібний керований синтез, отримана, і ми можемо перейти до обговорення особливостей проведення процесу термоядерного синтезу.

Коли йдеться про універсальну поширеність плазми, ми не випадково звертаємо свої погляди до зірок і космічного простору, а не до поверхні Землі. Плазма, тобто іонізований газ, атоми якого (усі або більшість) утратили частину своїх електронів і перетворилися на позитивні іони, утворюється й існує тільки в екстремальних умовах. Зрозуміло, слово "екстремальний" означає винятковість тисків, температур, потоків випромінювання та електромагнітних полів, які спостерігаються в зірках і космосі, порівняно з тими, котрі нас оточують під щитом щільної атмосфери й у межах того вузького температурного інтервалу, який необхідний для життя. Поява плазми в земних умовах — порівняно рідкісна подія; спалахи блискавок під час грози, полярні сяйва або слабке світіння на металевих вістрях при тихих коронних розрядах, імовірно, вичерпує список природних плазмових феноменів у нашому оточенні. Зате технічна цивілізація наших днів достатньо постачає нам плазмових пристроїв та інструментів. Різноманітні вогні газосвітлових реклам і набір газорозрядних приладів (випрямлячів, тиратронів, МГД-перетворювачів і т.д.) — усе це породження технічної електроніки і тих досліджень у галузі фізики газового розряду, які неухильно розвивалися протягом десятиліть.

У наш час досить гарячу й досить щільну плазму одержують у лабораторних умовах поки що тільки на короткі проміжки часу; до того ж вона ще не має повною мірою того бажаного комплексу властивостей, без якого процес керованого синтезу легких ядер неможливий.

Другим ключовим питанням, яке необхідно вирішити, є проблема стійкості плазми. Потрібно встановити, за яких умов гаряча плазма, урівноважена магнітними силами, може зберігати стійкість. Для цього було виконано теоретичні розрахунки й проведено різноманітні експерименти, у результаті яких було виявлено ті умови, за яких щільна гаряча плазма, повністю відірвана від стінок і утримувана у вакуумі магнітними силами, буде залишатися в рівновазі досить тривалий час. Слово "тривалий" уживається тут у тому розумінні, що кожен нейтрон протягом часу існування нагрітої плазми матиме значний шанс вступити в ядерну реакцію.

Сторінки


В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Концепції сучасного природознавства» автора Автор невідомий на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „3.7 Проблеми енергетики (ядерні і термоядерні реактори)“ на сторінці 2. Приємного читання.

Зміст

  • Передмова

  • Розділ 1. ПРИРОДОЗНАВСТВО, НАУКА, НАУКОВИЙ МЕТОД, ПІЗНАННЯ І ЙОГО СТРУКТУРА

  • 1.3 Загальнонаукові методи теоретичного пізнання

  • 1.4 Загальнонаукові методи, що застосовуються на емпіричному й теоретичному рівнях пізнання

  • Розділ 2. ЗАРОДЖЕННЯ, СТАНОВЛЕННЯ Й І РОЗВИТОК ПРИРОДОЗНАВСТВА

  • 2.1.2 Міфологія

  • 2.2 Становлення цивілізації

  • 2.2.3 Металургія

  • 2.2.4 Розвиток гірничої справи та видобування корисних копалин

  • 2.2.5 Розвиток домашніх промислів і становлення ремесла

  • 2.2.6 Еволюція суспільної свідомості. Раціональні знання

  • 2.2.7 Виникнення та становлення обміну

  • 2.2.8 Поділ праці

  • 2.2.9 Розвиток духовної культури

  • 2.2.10 Становлення писемності

  • 2.3 Географія та основні характеристики цивілізацій стародавнього сходу

  • 2.4 Давні цивілізації Європи

  • 2.5 Філософія і наука античного світу

  • 2.6 Наука середніх віків

  • 2.7 Природознавство в епоху Відродження

  • 2.7.4 Геометрична статика

  • 2.7.5 Кінематика

  • 2.7.6 Джордано Бруно: світоглядні висновки з коперниканізму

  • 2.7.7 Відкриття законів руху планет

  • 2.8 Виникнення класичної механіки

  • 2.8.3 Ньютонівська революція

  • 2.9 Від геометричного методу до аналітичної механіки

  • 2.10 Виникнення й розвиток електродинаміки

  • 2.10.4 Теорія електромагнітного поля Максвелла

  • 2.11 Основні досягнення природознавства XIX століття

  • Розділ З. СУЧАСНА ФІЗИЧНА КАРТИНА СВІТУ

  • 3.2 Теорія відносності

  • 3.3 Закон збереження енергії в макроскопічних процесах

  • 3.4 Другий закон термодинаміки та принцип зростання ентропії

  • 3.5 Квантова механіка

  • 3.6 Світ елементарних частинок

  • 3.6.2 Класифікація елементарних частинок

  • 3.6.3 Теорії елементарних частинок

  • 3.7 Проблеми енергетики (ядерні і термоядерні реактори)
  • Розділ 4. СУЧАСНА АСТРОФІЗИКА ТА КОСМОЛОГІЯ

  • 4.2 Галактика і квазари

  • 4.3 Народження та еволюція зірок

  • 4.4 Сонячна система

  • Розділ 5. СУЧАСНА БІОЛОГІЧНА КАРТИНА СВІТУ

  • 5.2 Теорія еволюції

  • 5.3 Розвиток життя на землі

  • 5.4 Походження людини

  • Розділ 6. УЧЕННЯ ПРО БІОСФЕРУ ТА НООСФЕРУ

  • 6.1.2 Утворення планетної системи

  • 6.1.3 Основні характеристики Землі

  • 6.1.4 Основні вимоги до умов, що забезпечують виникнення та розвиток життя

  • 6.1.5 Основні етапи хімічної еволюції, що передували абіогенезу

  • 6.1.6 Абіогенез

  • 6.1.7 Основні етапи еволюції живої природи

  • 6.1.8 Основні характеристики біосфери

  • 6.1.9 Виникнення атмосфери та гідросфери

  • 6.1.10 Основні характеристики атмосфери

  • 6.2 Ноосфера

  • 6.2.3 Перехід біосфери в ноосферу

  • 6.2.4 Умови, необхідні для становлення та існування ноосфери

  • 6.2.5 Наука як основний чинник ноосфери

  • 6.2.6 Проблеми становлення ноосфери

  • Рекомендовані теми рефератів

  • Список використаної літератури

  • Запит на курсову/дипломну

    Шукаєте де можна замовити написання дипломної/курсової роботи? Зробіть запит та ми оцінимо вартість і строки виконання роботи.

    Введіть ваш номер телефону для зв'язку, в форматі 0505554433
    Введіть тут тему своєї роботи