Тепер подумаймо, як це виглядає в субатомному світі. Пригадаймо, що Енріко Фермі виявив, що, згідно з правилами квантової механіки, математична поведінка груп пар елементарних частинок залежить від того, чи мають вони спін ½, себто чи є вони ферміонами. Поведінка груп ферміонів суттєво відрізняється від поведінки таких частинок, як фотони, зі значенням спіну, рівним 1 (або будь-яким цілочисельним значенням обертального кутового моменту, себто 0, 1, 2, 3 тощо). Для прикладу, математична «хвильова функція», яка описує пару ферміонів, є «антисиметричною», тоді як функція, котра описує пару фотонів, «симетрична». Це означає, що, якщо поміняти частинки місцями, хвильова функція, яка описує ферміони, змінить знак. Проте для таких частинок, як фотони, хвильова функція після обміну залишиться незмінною.
Поміняти дві частинки місцями рівносильно їх відображенню в дзеркалі. Частинка ліворуч стає частинкою праворуч. Таким чином, існує тісний взаємозв’язок між такими обмінами й тим, що фізики називають парністю, яка є загальною властивістю системи в умовах відображення (себто заміни лівого боку правим і навпаки).
Якщо елементарна частинка розпадається на дві інші частинки, хвильова функція, яка описує «парність» кінцевого стану (себто чи змінює хвильова функція знак при ліво-правому обміні частинок), дає нам змогу приписати початковій частинці величину, яку можна назвати парністю. У квантовій механіці, якщо сила, котра керує розпадом, не розрізняє лівий і правий боки, тоді розпад не змінить парність квантового стану системи.
Якщо хвильова функція системи після розпаду антисиметрична стосовно перестановки частинок, тоді система має «негативну» парність, тобто є непарною. У цьому випадку хвильова функція, яка описує початковий квантовий стан частинки, що розпадається, також повинна бути непарною (себто має змінювати знак при перестановці лівого й правого боків місцями).
Далі, піони — частинки, відкриті Пауеллом та гіпотетично передбачені Юкавою, непарні, тож хвильова функція, яка описує квантовий стан їхнього дзеркального відображення, матиме протилежний знак порівняно з початковою хвильовою функцією. Розрізнення між парністю й непарністю чимось нагадує розгляд, з одного боку, правильного сферичного м’ячика, який у дзеркалі виглядає ідентично, а отже, є парним:
А з другого боку, скажімо, ваша рука, яка у дзеркалі змінює характер (з лівого на правий), а отже, є непарною:
З огляду на ці дещо абстрактні роздуми, дані спостережень розпадів нових частинок, які відкрив Пауелл, ставили дослідників у глухий кут. Оскільки піон непарний, два піони повинні бути парними, адже (–1)2 = 1. Проте система з трьох піонів, за цими ж роздумами, є непарною, оскільки (–1)3 = –1. Таким чином, якщо в результаті розпадів частинок парність не змінюється, та сама початкова частинка не може розпадатися на два різні кінцеві стани з різною парністю.
Якби сила, відповідальна за цей розпад, поводилася, як усі інші відомі на той час сили на кшталт електромагнетизму чи гравітації, вона була б сліпа щодо парності (не відрізняла б лівий бік від правого), тож після розпаду вона не змінювала б початкову парність системи, точно як освітлення вашої правої руки не змушує її виглядати, як ваша ліва рука.
Оскільки видавалося неможливим, щоб частинки одного типу іноді розпадалися на два, а іноді на три піони, рішення здавалося простим. Має бути дві різні нові елементарні частинки з протилежними характеристиками парності. Пауелл назвав їх тау-частинкою й тета-частинкою, і одна з них розпадалася на два піони, а друга — на три.
Спостереження показували, що ці дві частинки мають точно однакові маси й час життя, що було трохи дивним, проте Лі і Янг висловили припущення, що це може бути загальною характеристикою різних елементарних частинок, які, на їхню думку, трапляються парами з протилежною парністю. Вони назвали цю ідею «дублюванням парності».
Такою була ситуація навесні 1956 року, коли відбулася Міжнародна конференція з фізики високих енергій, яка щорічно збиралась у Рочестерському університеті. 1956 року вся спільнота фізиків, які цікавилися ядерною фізикою та фізикою елементарних частинок, могла поміститися в одній університетській лекційній залі, тож усі ці вчені, зокрема всі основні гравці, традиційно приїздити на цю щорічну зустріч. Цього разу сталося так, що в одній кімнаті опинилися Річард Фейнман та Марті Блок. Як експериментатор, Блок не був настільки обтяжений можливою єрессю, властивою ідеї, що якась сила природи не була сліпою до розрізнення правого й лівого боку, тож він спитав Фейнмана, чи може бути так, що слабка взаємодія, яка керує виявленими Пауеллом розпадами, може відрізняти лівий бік від правого. Це дало б можливість одній частинці розпадатися на стани з різною парністю, а отже, тау- й тета-мезони могли бути тією самою частинкою.
Блоку бракувало зухвалості підняти це питання на відкритому засіданні, а от Фейнман це зробив, хоча сам особисто вважав це дуже малоймовірним. Янг відповів, що вони з Лі про це думали, але досі з цієї ідеї нічого не вийшло. Юджин Вігнер, який пізніше здобуде Нобелівську премію за роз’яснення важливості речей на кшталт парності для атомної та ядерної фізики, також був присутній і також поставив аналогічне питання щодо слабкої взаємодії.
Проте всі лаври дістаються переможцеві, і одна справа — теоретизувати щодо можливого порушення парності новою силою природи, здатною відрізняти лівий бік від правого, а зовсім інша — продемонструвати це. Через місяць Лі та Янг сиділи в нью-йоркському кафе й вирішили вивчити всі відомі експерименти, пов’язані зі слабкою взаємодією, аби перевірити, чи бодай якийсь із них може перекреслювати можливість порушення парності. На їхній величезний подив виявилося, що жоден експеримент не давав на це запитання чіткої відповіді.
Як пізніше казав Янг, «той факт, що збереження парності за слабкої взаємодії так довго бралося на віру без експериментальних підтверджень, приголомшував. Проте ще приголомшливішим була перспектива порушення так добре вивченого фізиками закону симетрії простору-часу. Ця перспектива нас не захоплювала».
До честі Лі та Янга, вони запропонували ціле розмаїття експериментів, які могли б перевірити можливість того, що слабка взаємодія розрізняє правий і лівий боки. Вони запропонували розглянути бета-розпад нейтрона в ядрі кобальта-60. Оскільки це радіоактивне ядро має ненульовий обертальний кутовий момент, тобто поводиться так, наче воно обертається, то також поводиться як маленький магніт. У зовнішньому магнітному полі ці ядра вишиковуються в напрямку поля. Якщо електрон, випущений при розпаді нейтрона в ядрі, переважно опиняється в якійсь одній півкулі, це буде ознакою порушення парності, оскільки в дзеркалі електрони опинятимуться в протилежній півкулі.
Якщо це було так, то вийшло б, що на фундаментальному рівні природа здатна відрізняти правий бік від лівого. Отже, створені людьми відмінності між ними (наприклад, зло проти добра) не є повністю штучними. Таким чином, світ у дзеркалі можна відрізнити від реального світу, або ж, як пізніше поетично висловився Річард Фейнман, можна скористатися цим експериментом, щоб надіслати повідомлення марсіянинові з поясненням, де розташоване «ліворуч» — скажімо, там, де перебуває півкуля, у якій за спостереженнями виникає більшість електронів, — без необхідності показувати це графічно.
На той час це здавалося настільки притягнутим за вуха, що багато кого з фізичної спільноти це потішило, проте ніхто не побіг виконувати цей експеримент. Ніхто, крім колеги Лі з Колумбійського університету, експериментаторки Ву Цзяньсун, також відомої як Мадам Ву.
Навіть нині ми сумуємо через брак фізиків-жінок, що їх випускають американські освітні заклади, а 1956 року ситуація була значно гірша. Якщо вже на те пішло, аж до кінця 1960-х років жінок навіть не приймали на бакалаврат у заклади Ліги плюща7. Майже через тридцять років після приїзду Ву з Китаю для навчання в Берклі в 1936-му в присвяченій їй статті в «Newsweek» вона зазначала: «Це ганьба, що в науці так мало жінок… У Китаї у фізиці багато, багато жінок. В Америці побутує хибне уявлення, що жінки-науковці — неохайні старі дівки. Це провина чоловіків. У китайському суспільстві жінку цінують за те, ким вона є, і чоловіки заохочують її до звершень, проте при цьому вона завжди лишається жіночною».
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Таємниці походження всесвіту» автора Краусс Лоуренс на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „Розділ без назви (24)“ на сторінці 2. Приємного читання.