4.1. Принципи функціонування автоматичних засобів видобування знань
Для аналізу і розв'язання задач різного характеру, в тому числі і економічних, сучасні інформаційні технології пропонують широкий спектр засобів прийняття рішень - людино-машинні інтерактивні системи, які дозволяють особам, що приймають рішення, використовувати дані, знання, об'єктивні чи суб'єктивні моделі. Необхідно зазначити, що вибір засобу для обробки інформації обумовлюється властивостями поставленої задачі.
Структуровані задачі містять кількісні та якісні змінні, підлягають формалізації, яка нескладно реалізується. Надалі для них можна розробити повністю структуровані процедури знаходження рішень.
Слабоструктуровані задачі містять як кількісні, так якісні змінні, для них можна частково розробити структуровані процедури знаходження рішень.
Неструктуровані задачі містять лише якісні описи, їх неможливо формалізувати, вимагають нестандартних процедур прийняття рішень, де використовуються досвід, кваліфікація та інтуїція людини.
Існує два способи отримання знань: документальний і експертний. В першому випадку відомості містяться у різноманітних інформаційних джерелах (книги, документи, бази даних, інформаційні системи і т.п.). Експертний спосіб припускає видобування і структуризацію знань з пам'яті людини - експерта, або фахівця в наочній області. Використовується для рішення неструктурованих задач.
Серед методів першої групи в економіці поширені методи математичної статистики, що вирішують спектр задач, проте не дозволяють знаходити і видобувати знання з масивів даних. Також, високі вимоги до кваліфікації кінцевих користувачів обмежують їх використання.
Серед другої групи поширені так звані експертні системи - спеціальні комп'ютерні програми, що моделюють процеси розмірковування та прийняття рішення людини. Наприклад, експертна система ухвалення рішень на ринку цінних паперів, експертна система оцінки кредитних ризиків, тощо. Висока вартість створення і впровадження експертних систем, нездатність людей знаходити складну і нетривіальну залежність, часто відсутність фахівців, здатних грамотно структурувати свої знання також ускладнюють популяризацію такого підходу.
Специфіка сучасних вимог до обробки інформації робить безсилим як статистичні, так і експертні підходи в багатьох практичних областях, у тому числі і економічних. Тому для аналізу сучасних баз даних методи повинні бути ефективними, простими у використанні, володіти значним рівнем масштабності і певною автоматизованістю.
Методи виявлення знань можна умовно розбити на п'ять груп:
o класифікація;
o кластеризація - групування об'єктів на основі даних, що описують сутність об'єкту. Об'єкти всередині кластера повинні бути "подібними" один на одного і відрізнятися від об'єктів, що увійшли до інших кластерів. Ступінь подібності об'єктів характеризує точність кластеризації. Для економічних задач використовують термін сегментація;
o регресія, у тому числі і задача прогнозування. Це встановлення залежності вихідних змінних від вхідних. До цього ж типу задач відноситься і прогнозування часового ряду на основі хронологічних даних.
o асоціація - виявлення закономірностей між пов'язаними подіями. Прикладом такої закономірності служить правило, яке вказує, що з події X випливає подія Y.
Такі правила називаються асоціативними. Вперше ця задача була розв'язана для знаходження типових шаблонів покупок в супермаркетах, тому іноді її ще називають аналізом споживчого кошика (market basket analysis).
Послідовні шаблони - встановлення закономірностей між пов'язаними у часі подіями
Розглянуті вище задачі знайшли широке застосування при видобуванні знань економічного характеру. Розглянемо декілька наступних прикладів.
Класифікація використовується у випадку, коли класи об'єктів є наперед відомими. Наприклад, віднесення нового товару певної товарної групи (продовольчі, промислові), віднесення клієнта до визначеної категорії (постійний клієнт, новачок). При кредитуванні це може бути, наприклад, віднесення клієнта за певними ознаками до однієї з груп ризику.
Кластеризація може використовуватися для сегментації і побудови профілів клієнтів (покупців). При достатньо великій кількості клієнтів неможливо розробити для кожного індивідуальний підхід. Тому клієнтів зручно об'єднати в групи - сегменти з однорідними ознаками (групами ознак). Це можуть бути сегменти по сфері діяльності, по географічному розташуванню. Після сегментації можна отримати відомості, які саме сегменти є найактивнішими, які приносять найбільший прибуток, виділити характерні для них ознаки. Ефективність роботи з клієнтами підвищується за рахунок обліку їх персональних переваг.
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Інформаційні технології та моделювання бізнес-процесів» автора Томашевський О.М. на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „4. Інтелектуальні технології обробки економічних даних“ на сторінці 1. Приємного читання.