Регресія використовується для встановлення залежності в чинниках. Наприклад, в задачі прогнозування залежною величиною є обсяги продажів, а чинниками, що впливають на цю величину, можуть бути попередні обсяги продажів, зміна курсу валют, активність конкурентів і т.д. Або, наприклад, при кредитуванні фізичних осіб вірогідність повернення кредиту залежить від особистих характеристик людини, сфери його діяльності, наявності майна, платоспроможності, тощо.
Асоціації допомагають виявляти товари, які люди купують одночасно. Це може бути корисно для більш зручного розміщення товару на прилавках, стимулювання продажів (наприклад: розміщення гірчиці чи кетчупу біля сосисок, чаю біля печива гарантує збільшення сукупних обсягів продажу цих продуктів).
Послідовні шаблони можуть використовуватись при плануванні продажів або наданні послуг. Наприклад: якщо людина придбала фотоплівку, то через деякий час віддасть її на проявлення і замовить друк фотографій.
Застосовуючи індуктивні методи до множини вхідних даних можна виявити нелінійні закономірності та видобути певні знання. Проте, незалежно від методу, їх якість та важливість насамперед залежить від якості, змістовності та повноти даних, що будуть проаналізовані.
4.2. Нейромережеві технології штучного інтелекту
Штучний інтелект є одним з напрямів інформатики, завданням якого є розробка апаратно-програмних засобів, які дозволяють користувачу формулювати і розв'язувати інтелектуальні задачі.
Сьогодні засоби штучного інтелекту включають в себе:
o експертні системи;
o програмний інструментарій розробки експертних систем;
o машинний переклад;
o інтелектуальні роботи;
o навчання і самонавчання;
o розпізнавання образів;
o нові архітектури комп'ютерів;
o ігри та машинна творчість.
Розробки в галузі штучного інтелекту розпочались з ідеї побудови системи, подібної до нервових клітин людини, що була запропонована Дж.Маккалоком та У.Піттом у 1943 р. та втілена у моделі штучного нейрона і принципах побудови штучних нейронних мереж, що здатні до навчання. Але задача практичного втілення розробленої методики виявилась складною і була розв'язана тільки через 20 років американським нейрофізіологом Ф.Розенблаттом в роботі 1962 р. "Принципи нейродинаміки", де була запропонована модель персептрона.
Штучна нейронна мережа - паралельно розподілений процесор, який володіє здатністю до навчання, збереження і представлення знань, набутих на основі досвіду
Штучні нейронні мережі, зокрема багатошаровий персептрон, вирішують задачі регресії і класифікації. Проте, на відміну від дерев рішень, нейронні мережі не здатні пояснити отримане рішення, тому їх функціонування нагадує "чорний ящик" з входами і виходами.
Нейронні мережі є обчислювальними структурами, що моделюють прості біологічні процеси, подібні до тих, що відбуваються в людському мозку. Вони здатні до адаптивного навчання шляхом реакції на позитивні і негативні дії.
Подібність штучної нейронної мережі з мозком полягає в двох аспектах:
Сторінки
В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Інформаційні технології та моделювання бізнес-процесів» автора Томашевський О.М. на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „4. Інтелектуальні технології обробки економічних даних“ на сторінці 2. Приємного читання.