Розділ «5. Створення сховищ даних. Технології OLAP та Data Mining»

Інформаційні технології та моделювання бізнес-процесів


5.1. Структура сховища даних та оптимізація його обсягів


Методи інтелектуального аналізу інформації часто розглядають як природний розвиток концепції сховищ даних. Головна відмінність сховища від бази даних полягає в тому, що їх створення і експлуатація переслідують різну мету. База даних відіграє роль помічника в оперативному управлінні організацією. Це щоденні задачі отримання актуальної інформації: бухгалтерські звітності, облік договорів, тощо. Сховище даних накопичує всі необхідні дані для здійснення задач стратегічного управління в середньостроковому і довгостроковому періоді. Наприклад, продаж товару і генерація рахунку проводяться з використанням бази даних, а аналіз динаміки продажів за декілька років, що дозволяє спланувати роботу з постачальниками - за допомогою сховища даних.

Сховище даних (Data Warehouse) - це систематизована інформація з різнорідних джерел, яка є необхідною для обробки з метою ухвалення стратегічно важливих рішень

Сховище будується на основі клієнт-серверної архітектури, СУБД і утиліт підтримки прийняття рішень. Дані, що надходять у сховище, стають доступні тільки для читання.

Властивості сховища даних;

o предметна орієнтація (інформацію організовано відповідно до основних аспектів діяльності);

o інтегрованість даних (дані в сховище надходять з різних джерел і відповідно агрегуються);

o стабільність, інваріантність у часі (записи в DW ніколи не змінюються, являючи собою відбитки даних, зроблені у певний час);

o мінімізація збитковості інформації (перед завантаженням у сховища дані фільтруються, зберігаються у певній послідовності, а також формується деяка підсумкова інформація).

В сховищах даних надмірність даних є мінімальною (приблизно 1%), оскільки:

o при завантаженні у сховище дані сортуються і фільтруються;

o інформація у сховищах зберігається в хронологічному порядку, що майже повністю виключає перекриття даних;

o при завантаженні у сховище дані зводяться до єдиного формату, включаючи обчислення підсумкових (агрегованих) показників.

Сервери багатовимірних баз даних можуть зберігати дані по-різному, крім агрегованих показників формується ще й додаткова інформація: поля часу, дати; адресні посилання, таблиці метаданих тощо. Це приводить до значного збільшення інформації. Вхідний масив розміром 200 Mb може розростись до об'єму 5 Gb. Сховище даних повинне бути оптимально організованою базою даних, яка забезпечує максимально швидкий і оперативний пошук інформації.

Вітрина даних - це спрощений варіант сховища даних, що містить лише тематично орієнтовані, агреговані дані

Глобальне сховище даних складається з трьох рівнів:

1) сховище агрегованих даних;

2) вітрини даних, які базуються на інформації зі сховища даних;

3) клієнтські робочі місця, на яких встановлено засоби оперативного аналізу даних.

Сторінки


В нашій електронній бібліотеці ви можете безкоштовно і без реєстрації прочитати «Інформаційні технології та моделювання бізнес-процесів» автора Томашевський О.М. на телефоні, Android, iPhone, iPads. Зараз ви знаходитесь в розділі „5. Створення сховищ даних. Технології OLAP та Data Mining“ на сторінці 1. Приємного читання.

Зміст

  • ВСТУП

  • 1. Технологія: поняття, основні властивості та процеси. Інформація, дані, знання як об'єкти технології

  • 2. Економічна інформація і засоби її формалізованого опису

  • 3. Інформаційні технології: властивості, вимоги, цілі

  • 3.5. Інформаційна технологія автоматизації процесу аналізу інформації з використанням програмного забезпечення

  • 4. Інтелектуальні технології обробки економічних даних

  • 4.3. Технологія виявлення знань в базах даних (Knowledge Discovery in Databases)

  • 4.4. Нові концепції у теорії штучного інтелекту

  • 5. Створення сховищ даних. Технології OLAP та Data Mining
  • 6. Автоматизовані інформаційні системи для підприємств та організацій

  • 7. Інформаційні технології в управлінні

  • 7.3. ERP-системи та їх особливості

  • 7.4. Корпоративні інформаційні системи

  • 8. Прийняття рішень у системах управління. Динамічне програмування

  • 9. Додаткові економічні задачі динамічного програмування

  • 10. Інформаційні технології комп'ютерних мереж

  • 11. Технології глобальної мережі Інтернет

  • 11.4. Принципи функціонування пошукової системи Google

  • 12. Основи електронної комерції

  • 12.3. Технології Інтернет-банкінгу

  • 13. Гіпертекстові технології

  • 14. Технології захисту інформаційного продукту

  • 14.2. Документація та права на продукт

  • 14.3. Життєвий цикл піратської електронної книги

  • Оцифровування

  • 14.4. Піратство: різні погляди

  • 15. Засоби захисту програмного продукту. Технології несанкціонованого одержання інформації

  • 15.5. Електронне "сміття" та взаємодія програмних закладок

  • 16. Технології забезпечення безпеки інформаційних систем

  • 17. Проектування інформаційних систем. CASE - технології

  • 18. Технології моделювання бізнес-процесів. Мова UML

  • ПЕРЕЛІК РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ

  • Запит на курсову/дипломну

    Шукаєте де можна замовити написання дипломної/курсової роботи? Зробіть запит та ми оцінимо вартість і строки виконання роботи.

    Введіть ваш номер телефону для зв'язку, в форматі 0505554433
    Введіть тут тему своєї роботи